
2026/01/15 13:25 1/4 Cross Platform Development for Raspberry

HomeWiki - https://wiki.oscardegroot.nl/

Cross Platform Development for Raspberry

Cross-development means developing and compiling programs on another platform then it intended
to run upon. It is a common approach for Pi, since it’s also how Raspian is built. For quite some time I
did compile Pi applications on the Pi itself. Which works quite well, but has one large drawback:
performance. Being able to compile these programs on my 8 core 16GB desktop, improved
compilation time enorms. And it is quite simple. Let's have a look!

Set Up Cross Build Tools

I’m using Ubuntu 16.04 on my desktop, but this should work with all Debian derivatives. Be carefull
with older distribution since the ARM development libraries may not be the ones used on the Pi. The
first step is to install the development tools on the desktop, or host system. From the command line
run the following:

sudo apt-get update; apt-get upgrade
sudo apt-get install build-essential
sudo apt-get install g++-arm-linux-gnueabihf

The first line makes sure that the system is up to date. The second instruction installs the general
build tools. The third installs the C and C++ compiler and build tools for the Pi’s ARM processor. The
ARM architecture designation, arm-linux-gnueabihf-, is used as a prefix to distinguish the ARM tools
from the host system tools. Note the dash at the end of the string. Test the installation by entering
the commant below. This reports the version of the G++ compiler installed and other information:

arm-linux-gnueabihf-g++ -v

Get required ARM libraries

Depending on the application and required libraries, it is possible that not all libraries are available.
Easiest way is to copy these over from an existing Raspberry installation. On the Raspberry these are
available in: /usr/lib/arm-linux-gnueabihf. On the target build environment the library path is:
/usr/arm-linux-gnueabihf/lib/. We will be placing these retrieved libraries in a separate
subdirectory (extra).

mkdir /usr/arm-linux-gnueabihf/lib/extra
scp root@192.168.178.xx:/usr/lib/arm-linux-gnueabihf/libxxxx.* /usr/arm-
linux-gnueabihf/lib/extra

Now we need to tell the loader (ld) to look for libraries in this extra directory

nano /etc/ld.so.conf.d/arm-linux-gnueabihf.conf
Insert the path "/usr/arm-linux-gnueabihf/lib/extra" into this file. Then
save and run:

Last
update:
2024/04/24
16:39

raspberry:raspberry-cross-platform https://wiki.oscardegroot.nl/doku.php?id=raspberry:raspberry-cross-platform&rev=1713976748

https://wiki.oscardegroot.nl/ Printed on 2026/01/15 13:25

ldconfig

Test Application

The host system should now be ready to build a Raspberry Pi program. Let’s test it with a minimal test
application, just to see if everything is working. Create the following test.cpp file:

#include <iostream>
using namespace std;

int main()
{
 cout << "This is our first test!" << endl;
 return 0;
}

Build the program. The first line compiles the file test.cpp and the second links the compiler output to
build the executable.

arm-linux-gnueabihf-g++ -O3 -g3 -Wall -c -fPIC -o test.o test.cpp
arm-linux-gnueabihf-g++ -o test test.o

Now let's check the architecture of the executable with the 'file' command. If this shows 'ARM'it is
compiled for an ARM processor and can transfer it to the Pi.

file test
test: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically
linked,
interpreter /lib/ld-linux-armhf.so.3, for GNU/Linux 3.2.0,
BuildID[sha1]=3a73dacec4a89fa2c6ea9751d18743ba9bba33ac, not stripped

scp test pi@192.168.178.xx:/tmp

That's all. I told you this was simple.

Remote Debugging

We will gdb on host and Pi to debug with the GCC toolset. First install the debug capability on our
desktop system that works with target systems regardless of the processor architecture.

sudo apt-get install gdb-multiarch

Now install a debug server on the Pi system that can be connected to from our desktop and control
execution on the target.

2026/01/15 13:25 3/4 Cross Platform Development for Raspberry

HomeWiki - https://wiki.oscardegroot.nl/

sudo apt-get install gdbserver

Start the server on the Pi. The command starts the server, runs it continuously. The third parameter is
the computer name or IP address of the host computer. In my case it is “192.168.178.18”. 2001 is the
port that the host and target will use for communication. Be aware that running the gdbserver is a
potential security hole on the Pi. So make sure it can only be accessed from your local network.

gdbserver --multi 192.168.178.18:2001

The server uses stdout to display error messages and the output from the debugged program.

The program gdb-multiarch is an interactive program. On the host, enter the command:

gdb-multiarch

This prints a lot of output followed by the prompt (gdb). You might want to add the quiet option (-q) to
the command line. At the prompt, using the name of your Pi, enter the following commands and you
should see the responses, as shown in italics here:

target extended-remote 192.168.178.61:2001
Remote debugging using 192.168.178.61:2001
set remote exec-file remote/test
[[no response]]
file test
Reading symbols from test...done.

The target command tells gdb the name of the target system, 192.168.178.61 with port, 2001. If it
worked, you’ll get the response shown; otherwise a timeout message. The set remote line specifies
the file location to use on the Pi target system. Remember that the executable needs to be copied
onto the target system every time it is changed. We’ll see how to do that from within gdb, below. The
last command, file, is the path and filename on the host computer. This can be a directory other than
where the debugger is running. Now, type the following and get the response as shown:

run
Starting program: /tmp/hello
[[a bunch more lines, some warnings and stuff to ignore for now]]
[Inferior 1 (process 234) exited normally]

If it works you’ll see that last line. Now switch to the SSH terminal connected to the Pi and you’ll see a
couple of lines of status, the output from the program, a blank line, and a line reporting the exit status
of the program. If all this doesn’t work check the error message from the server. It should explain
what is happening. Often there is a mismatch between what you told gdb and the location of the
executable.

The debugger provides a large number of commands for manipulating breakpoints, continuing
execution, listing the program, etc. For instance, type in main and the program stops when main() is
reached. A ‘c’ runs the program after a breakpoint. To help with debugging, there is an interesting
mode, the Terminal User Interface, or tui. You can access and leave it by typing in Ctrl-x, Ctrl-a. This
mode provides windows that show the source, registers, assembly language, and other information.

Last
update:
2024/04/24
16:39

raspberry:raspberry-cross-platform https://wiki.oscardegroot.nl/doku.php?id=raspberry:raspberry-cross-platform&rev=1713976748

https://wiki.oscardegroot.nl/ Printed on 2026/01/15 13:25

NEW

Check the current target architecture by logging into the Pi:

gcc -dumpmachine

arm-linux-gnueabihf

Links

https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
https://www.acmesystems.it/arm9_toolchain
https://jensd.be/1126/linux/cross-compiling-for-arm-or-aarch64-on-debian-or-ubuntu
https://learn.arm.com/install-guides/gcc/cross/

$ sudo apt install gcc-aarch64-linux-gnu g++-aarch64-linux-gnu

From:
https://wiki.oscardegroot.nl/ - HomeWiki

Permanent link:
https://wiki.oscardegroot.nl/doku.php?id=raspberry:raspberry-cross-platform&rev=1713976748

Last update: 2024/04/24 16:39

https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
https://www.acmesystems.it/arm9_toolchain
https://jensd.be/1126/linux/cross-compiling-for-arm-or-aarch64-on-debian-or-ubuntu
https://learn.arm.com/install-guides/gcc/cross/
https://wiki.oscardegroot.nl/
https://wiki.oscardegroot.nl/doku.php?id=raspberry:raspberry-cross-platform&rev=1713976748

	Cross Platform Development for Raspberry
	Set Up Cross Build Tools
	Get required ARM libraries
	Test Application

	Remote Debugging
	NEW
	Links

