2026/01/15 13:47 1/6 NFTables

NFTables

Hooks

Every packet that enters a system, whether incoming or outgoing will trigger some hooks as it
traverses through the Linux kernel’s networking stack. Those five hooks have been present in the
Linux kernel for a very long time. Linux kernel allows rules that are associated with these hooks to
interact with the network traffic. Nftables has five hooks including prerouting, input, output, post
routing, forward, and ingress.

Local Process

L
Routing

o

When traffic flow goes into a local machine, first, it faces the prerouting hook and then input hook.
Next, the traffic generated by the local machine’s processes follows the output hook and then the
postrouting hook as shown in the next figure. The packets destined to your network but are not
addressed to the local node will face the forward hook after following prerouting and then postrouting
path. Ingress hook, however, as a new hook in nftables, is a hook that is placed before all the hooks
behind the prerouting hook and can filter traffic on layer 2 OSI model. With this hook, therefore, early
filtering policies can be defined (2019).

Address Families

Address families determine the type of incoming and outgoing packets processed by nftables. For
each address family, the Linux kernel contains specific hooks at different stages of the packet
processing paths, which invoke nftables to decide either allow or drop a packet only if relevant rules
for these hooks such as input or output are defined. These address families are as follows:

Family Description

ip: IPv4 address family.

ip6: IPv6 address family.

inet: |Supports Both IPv4 and IPv6 address families.

arp: ARP address family, handling IPv4 ARP packets at layer 2 OSI model.

bridge: |Bridge address family, handling packets traversing a bridge device at layer 2.
netdev:|Netdev address family, handling packets from ingress hook working before layer 3.

HomeWiki - https://wiki.oscardegroot.nl/

Last update: 2023/09/03 08:54 networking:nftables https://wiki.oscardegroot.nl/doku.php?id=networking:nftables&rev=1693731251

Table with netdev family, by means of ingress hook, allows early filtering traffic before they reach
other filters below layer 3 on the OSI model. netdev family with ingress hook is an ideal stage to drop
packets that result from DDOS attacks since this hook works very early in the packet path of
networking. There are different hooks for different “family” types. The following schematic shows
packet flows through Linux networking:

Famiisg Appiuaien Lape
e = l
WL A i Layer
[r— A o Dt
Hosk W Heok
BiklgE i
-p Proswa i) priries,
et Pramaling priibe
el "o
1T (T
Prorcaring iz Foranss Frasroaing B, | R
T Heoli " i nr * Hack o Heok * L
P ELN
Huy A
Tipe gt Briags | ayer gt Ve
b Ericige Iriciga
N PFruvzalig preelas -
E] + !
i
Drivar " o B | Pomeuting - Brecs Forward » Panicution Crtear
A2 it s e i citon”— e e " Epem Lopied
&
AR s
» ARAF Handlar g

Variables

Repetition is bad. To simplify things, nftables supports variables. Instead of repeating an interface
multiple times, you define it at the beginning of your configuration file. After that, you will be using
the variable. Example: defining interfaces.

eth0
ethl
{ $ext if, $int if }

define ext if
define int if
define all if

Tables

Within the configuration of nftables, a table is at the top of the ruleset. It consists of chains, which are
containers for rules. Overview: Tables -> Chains -> Rules. The following structure can be seen in
the nftables configuration file as shown in the next figure. As it is clear from this example below, a
table followed by an address family, in this case “inet”, and then it is followed by its defined name
that is “tablel” with an open and a close curly bracket.

table inet tablel {
chain input {
type filter input priority @; policy drop;
ct state es ished,related accept

iifname "ens udp dport openvpn counter packets accept
iifname “ens tcp dport ssh counter packets accept
iifname "ens224” tcp dport ssh accept

https://wiki.oscardegroot.nl/ Printed on 2026/01/15 13:47

https://wiki.oscardegroot.nl/lib/exe/detail.php?id=networking%3Anftables&media=networking:nf-hooks-detailed.png
https://wiki.oscardegroot.nl/lib/exe/detail.php?id=networking%3Anftables&media=networking:nf-hooks-detailed.png
https://wiki.oscardegroot.nl/lib/exe/detail.php?id=networking%3Anftables&media=networking:nf-hooks-detailed.png
https://wiki.oscardegroot.nl/lib/exe/detail.php?id=networking%3Anftables&media=networking:nf-hooks-detailed.png
https://wiki.oscardegroot.nl/lib/exe/detail.php?id=networking%3Anftables&media=networking:nf-hooks-detailed.png
https://wiki.oscardegroot.nl/lib/exe/detail.php?id=networking%3Anftables&media=networking:nf-table-structure.jpg
https://wiki.oscardegroot.nl/lib/exe/detail.php?id=networking%3Anftables&media=networking:nf-table-structure.jpg

2026/01/15 13:47 3/6 NFTables

Chains

Chains are a container of rules and are located inside a table. Chains have two types.
¢ A base chain is an entry point for packets from the networking stack, where a hook value is
specified.
e A regular chain is a chain that is used for organization of chains and has no hook hence no
control on packets. It may be used as a jump target for better organization.

Similar to a table, all operational activities can be done on a chain in addition to renaming a chain.
Chains should be followed by a name and an open and a close curly bracket. They also come with a
type, a hook, a priority, and a policy that must be defined when creating a chain as shown in the next
figure.
table [<family>] <name> {

chain <chain-name> {

type <filter-type> hook <hook> priority <priority>; policy <policy>;

3

Chains Types

Type Description

This is a standard chain type and supports all address families namely ARP, bridge, IP, IP6, and
inet and hooks.

It supports only IP and IPv6 address families and only output hook. If relevant parts of the IP
header have changed, a new route lookup is performed.

It can perform Network Address Translation, and only supports IP and IPv6 address families.
prerouting, input, output, postrouting hooks are also supported.

Filter

Route

Nat

Chains Hooks

A Hook in a chain refers to a specific stage that a packet is being processed through a Linux kernel
based on defined rules. These hooks are ingress, prerouting, input, forward, output, and postrouting
and are explaind in detail in the next section. Prerouting, input, forward, output, and postrouting hook
can also support IP, IPv6, and inet address families. To support arp address family, input, output
hooks can be used while for netdev family, ingress hook should be used.

Type Description
All packets entering a node are processed by this hook. It is invoked before the routing

Prerouting process and is used for early filtering or changing packet attributes that affect routing.
This hook are executed after the routing decision. Packets delivered to a local system are
Input)
processed by this hook.
Forward This hook also happens after the routing decision. Packets that are not directed to the

local machine are processed by this hook.
Output This hook controls the packets that are originated from processes in a local machine.
Postrouting|This hook is used for the packets leaving a local system after the routing decision.

HomeWiki - https://wiki.oscardegroot.nl/

Last update: 2023/09/03 08:54 networking:nftables https://wiki.oscardegroot.nl/doku.php?id=networking:nftables&rev=1693731251

Type Description

Inaress (only available at the netdev family): Since Linux kernel 4.2, traffic can be filtered before
9 layer 3 and way before prerouting, after the packets are passed up from a NIC driver.

Priority

Nftables requires you to specify a priority value when creating a base chain. You can specify integer
values, but the newer versions of Nftables also define placeholder names for several discrete priority
values analog to the mentioned enums in Netfilter. The following table lists those placeholder
namesl12).

Name Priority Value
raw -300

mangle -150
conntrack13)|-200

dstnat -100

filter 0

security 50

srcnat 100

When creating a base chain, you can e.qg. specify priority filter which translates into priority 0. The
following example creates a table named myfilter in the ip address family (IPv4). It then creates two
base chains named foo and bar, registering them with the Netfilter IPv4 hook input, but each with
different priority.

nft create table ip myfilter
nft create chain ip myfilter foo {type filter hook input priority 0\;}
nft create chain ip myfilter bar {type filter hook input priority 50\;}

alternatively you could create the same chains using named priority
values:

nft create chain ip myfilter foo {type filter hook input priority filter\;}
nft create chain ip myfilter bar {type filter hook input priority
security\;}

Policies

Chains have to have their policies by which packets are treated to be either dropped or accepted by
default. These policy values can be “accept”, which is the default policy, or “drop”. Accept policy
means that all the network packets based on their locations defined by the hook should be accepted
by default whereas drop policy means that by default all network packets must be dropped based on
their locations defined by the hook in a chain and then based on defined rules inside a chain will be
accepted or otherwise.

Rules

https://wiki.oscardegroot.nl/ Printed on 2026/01/15 13:47

2026/01/15 13:47 5/6 NFTables

Rules are the actions that control the incoming and outgoing packets based on the defined hooks in a
chain. If a rule inside a chain matches with a packet based on the stage derived from their hooks, the
packet is dropped or accepted. A rule is evaluated from left to right in a way that when the first
statement matches, it continues with the next parts of a rule, but if not, the next rule will be
evaluated. The structure of a rule includes matches and statements which is as follows:

<matches> <statements>
For example:

iifname “interface name” Policy: <accept or drop>

Matches

Matches are those filters that enable a rule to filter certain packets. Some important matches with
their possible formats are briefly as follows:

Ip saddr <ip source address>

Ip daddr <ip destination address>
tcp / udp dport <destination port>
tcp / udp sport < source port>

tcp flags <flags>

ICMP type <type>

iifname <input interface name>
oifname <output interface name>
protocol <protocol>

Statements

A statement is the defined action performed once a packet matches a match(es) defined by a rule.
Statements comprise of verdict, log, and counter statements.

Verdict statements

The verdict statement alters the control flow in the rule set and issues policy decisions for packets.
The valid verdict statements are:

Statement |Description

accept Accept the packet and stop the remaining rules evaluation.

drop Drop the packet and stop the remaining rules evaluation.

queue Queue the packet to userspace and stop the remaining rules evaluation.
continue Continue the ruleset evaluation with the next rule.

Continue at the first rule of <chain>. It will continue to evaluate the next rules to
finally return to the last position or a return statement is issued.

Return from the current chain and continue at the next rule of the last chain. In a base
chain, it is equivalent to accept

jump <chain>

return

HomeWiki - https://wiki.oscardegroot.nl/

Last update: 2023/09/03 08:54 networking:nftables https://wiki.oscardegroot.nl/doku.php?id=networking:nftables&rev=1693731251

Statement |Description

Similar to jump, but after finishing the rules in <chain>, the evaluation will continue to
evaluate the next chains instead of waiting for a return to the last chain.

goto <chain>

Links

e wiki.nftables.org

From:
https://wiki.oscardegroot.nl/ - HomeWiki

Permanent link:

Last update: 2023/09/03 08:54

https://wiki.oscardegroot.nl/ Printed on 2026/01/15 13:47

https://wiki.nftables.org/wiki-nftables/index.php/Main_Page
https://wiki.oscardegroot.nl/
https://wiki.oscardegroot.nl/doku.php?id=networking:nftables&rev=1693731251

	NFTables
	Hooks
	Address Families
	Variables
	Tables
	Chains
	Chains Types
	Chains Hooks
	Priority
	Policies

	Rules
	Matches
	Statements
	Verdict statements

	Links

