
2026/01/16 00:45 1/6 ASPM on Linux

HomeWiki - https://wiki.oscardegroot.nl/

ASPM on Linux

ASPM is a PCI-E enhancement. It allows for a device to go completely into electrically idle state,
meaning it will not send or receive electrical signals for a while. While ASPM brings a reduction in
power consumption, it can also result in increased latency as the serial bus needs to be 'woken up'
from low-power mode, possibly reconfigured and the host-to-device link re-established. This is known
as ASPM exit latency and takes up valuable time which can be annoying to the end user if it is too
obvious when it occurs. This may be acceptable for mobile computing, however, when battery life is
critical.

Power Mode L0 and L1

Currently, two low power modes are specified by the PCIe 2.0 specification; L0s and L1 mode. The first
mode (L0s) concerns setting low power mode for one direction of the serial link only, usually
downstream of the PHY controller. The second mode (L1) is bidirectional and results in greater power
reductions though with the penalty of greater exit latency.

PCIE cards should always support ASPM, what the ASPM requirements says today is that L1 is
mandatory and L0s is optional unless the formfactor specifications explicitly requies it. Not sure which
form factors explicitly require L0s (anyone?). Additionally software must not enable L0s in either
direction on a given Link unless components on both sides of the Link each support L0s.

The way it typically works internally on endpoints (devices) is that there are idle timers (counters) in
the chipset. There is a set point at which the PCIe link is idle enough to enter L0s, and a second point
at which we're idle enough to enter L1. A device could potentially 'support' L0s but internally the
timers could be set such that L0s and L1 happen at the same time or L0s happens after L1, so the link
will essentially never enter L0s. ASPM compliance may vary by device, ASPM specification has varied
as new releases have been

Check current ASPM status

You can verify by using lspci -vvv as root and check the LnkCtl attribute of the devices.

lspci -vvv

In case of enabled:
 LnkCtl: ASPM L0s L1 Enabled
In case of disabled:
 LnkCtl: ASPM Disabled; RCB 128 bytes Disabled-

Why is ASPM disabled for my device? ASPM should automatically be negotiated by the BIOS based on
all the endpoints connected on a root complex. IF your device has ASPM disabled it is likely because:

the BIOS determined that needed to happen
PCIE requires ASPM but L0s is optional so you might have L0s disabled and only L1 enabled
you have a buggy BIOS

Last update:
2022/01/15 11:38 linux:system:powersave:aspm https://wiki.oscardegroot.nl/doku.php?id=linux:system:powersave:aspm&rev=1642246727

https://wiki.oscardegroot.nl/ Printed on 2026/01/16 00:45

you have no BIOS and your systems programmers didn't address ASPM yet

Enforce Linux kernel ASPM support

An Operating System should not need to muck with ASPM, the BIOS would have dealt with the
capability exchanges between the root complex and the different endpoints. Of course, BIOSes are
buggy though – so the Linux kernel does have the capability to oversee and review the capabilities by
itself and overrule the BIOS. ASPM support in the Linux kernel is also used to expose ASPM capabilities
for PCIE devices to userspace (need confirmation, I see this being done in the code, but makes no
sense).

nano /etc/default/grub

Add pcie_aspm=force to the kernel parameter list:
GRUB_CMDLINE_LINUX_DEFAULT="quiet pcie_aspm=force"

update-grub
reboot

This forces ASPM in kernel while it can still remain disabled in hardware and not work. To check
whether this is the case the dmesg | grep ASPM command can be used and if that is the case,
hardware-specific Wiki article should be consulted.

ASPM policies are set in /sys/module/pcie_aspm/parameters/policy.By default it looks like this:

cat /sys/module/pcie_aspm/parameters/policy

[default] performance powersave

To adjust to powersave do (the following command will not work unless enabled in the kernel):

echo powersave > /sys/module/pcie_aspm/parameters/policy

But can be also specified at boot time with the pcie_aspm.policy kernel parameter, where, for
example pcie_aspm.policy=performance

Automated ASPM enabling script

Script to automate ACPM enabling by Luis R. Rodriguez. Automated script

Enabling ASPM with setpci

The PCIE Link Control Register is properly parsed with lspci -vvv but you might want to know exactly
how to determine if your device has ASPM support manually. This is required to know exactly where
to poke a PCIE device to force enable ASPM manually for a specific root complex or endpoint device.

https://wiki.oscardegroot.nl/doku.php?id=linux:powersave:aspm:script

2026/01/16 00:45 3/6 ASPM on Linux

HomeWiki - https://wiki.oscardegroot.nl/

This section covers how to do this.

How to read the Link Control Register for ASPM

The Link Control Register on the PCI device tells us if ASPM is enabled and what ASPM settings will be
used. How to find the register for the Link Control Register for any PCIE device is explained below –
but first lets review what to look out for on the register. Look at the last byte of the Link Control
Register on the PCIE device the values to decode for ASPM are as follows:

0b00 = L0 only
0b01 = L0s only
0b10 = L1 only
0b11 = L1 and L0s

We have to enable ASPM on two levels:

The PCIE controller (root complex)1.
The device itself2.

Change setting on PCIE controller level

First find the bus address for the device you want to check for. On a box with Atheros you might get:

lspci | grep -i atheros

03:00.0 Network controller: Atheros Communications Inc. Device 0030 (rev 01)

The 03:00.0 is the bus address. Now first check on which root complex this device sits on, by using
lspci -t. You do this to first find the Link Control Register settings of your root complex. Only after
you've tuned that should you tune the card. You should unload the module or turn the device off prior
to tweaking with it. For the root complex this should not be needed.

lspci -t

-[0000:00]-+-00.0
 +-02.0
 +-02.1
 +-03.0
 +-1b.0
 +-1c.0-[0000:02]--
 +-1c.1-[0000:03]----00.0
 +-1c.2-[0000:04]--
 +-1c.3-[0000:05-0c]--
 +-1c.4-[0000:0d-14]--
 +-1d.0
 \-1f.3

In this case we see 03:00.0 sits on 00:1c.1 so you can now do lspci -s 00:1c.1 -xxx on that root

Last update:
2022/01/15 11:38 linux:system:powersave:aspm https://wiki.oscardegroot.nl/doku.php?id=linux:system:powersave:aspm&rev=1642246727

https://wiki.oscardegroot.nl/ Printed on 2026/01/16 00:45

complex and to get the PCI config space of that device. The PCIE spec has a fun little algorithm to find
the Link Control Register out of the PCI config space. The logic is as follows:

Read 0x34 and read the register that points to
If that value is not 0x10 then read the next byte (0x35) and go read that register
If that register is not 0x10 then read the next byte and go read that register
Repeat this until you find a register that has 0x10
Once you find the register with 0x10 then add 0x10 to the final register you were reading
The Link Control Register is this final register + 0x10 Lets analyze a real world example of a
root complex, specifically the one of the root complex above.

lspci -s 00:1c.1 -xxx

00:1c.1 PCI bridge: Intel Corporation 82801H (ICH8 Family) PCI Express Port
00: 86 80 41 28 07 05 10 00 03 00 04 06 10 00 81 00
10: 00 00 00 00 00 00 00 00 00 03 03 00 30 30 00 00
20: 00 dc 30 df e1 df e1 df 00 00 00 00 00 00 00 00
30: 00 00 00 00 40 00 00 00 00 00 00 00 0b 02 04 00
40: 10 80 41 01 c0 8f 00 00 00 00 10 00 11 2c 11 02
50: 40 00 11 30 e0 a0 18 00 00 00 48 01 00 00 00 00
60: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
80: 05 90 01 00 0c 30 e0 fe 69 41 00 00 00 00 00 00
....
....

So first read 0x34, and we see it is 0x40 (do not hop to the next byte here). We read 0x40 and see it
is 0x10. Now we add 0x40 + 0x10 = 0x50. We read 0x50. 0x50 is the value of the Link Control
Register. 0x50 has a value of 0x40. This means only L0 is enabled so ASPM is completely disabled. To
tweak ASPM for this root complex then we we would do have to first keep the original value and then
OR it with our new ASPM settings. Note: as it turns out 0x50 is also used for the Link Control Register
for ICH6, ICH7, ICH8, ICH9.

Disables ASPM, enables only L0 (this was the existing setting)
sudo setpci -s 00:1c.1 0x50.B=0x40

Enable L0s only
sudo setpci -s 00:1c.1 0x50.B=0x41

Enable L1 only
sudo setpci -s 00:1c.1 0x50.B=0x42

Enable L1 and L0s
sudo setpci -s 00:1c.1 0x50.B=0x43

Change setting on Device level

Now – lets get on to tweaking your device. Since you have the bus address of your 802.11 device you
can now use this to get its respective PCI config space in hex.

2026/01/16 00:45 5/6 ASPM on Linux

HomeWiki - https://wiki.oscardegroot.nl/

lspci -s 03:00.0 -xxx

03:00.0 Network controller: Atheros Communications Inc. Device 0030 (rev 01)
00: 8c 16 30 00 03 01 10 40 01 00 80 02 10 00 00 00
10: 04 00 3e df 00 00 00 00 00 00 00 00 00 00 00 00
20: 00 00 00 00 00 00 00 00 00 00 00 00 8c 16 16 31
30: 00 00 00 00 40 00 00 00 00 00 00 00 0b 01 00 00
40: 01 50 c3 5b 00 00 00 00 00 00 00 00 00 00 00 00
50: 05 70 84 01 00 00 00 00 00 00 00 00 00 00 00 00
60: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
70: 10 00 02 00 00 87 04 05 10 20 0b 00 11 5c 03 00
80: 41 00 11 10 00 00 00 00 00 00 00 00 00 00 00 00
...
...

This example is a little more complicated so we'll analyze it line by line:

00: 8c 16 30 00 03 01 10 40 01 00 80 02 10 00 00 00
10: 04 00 3e df 00 00 00 00 00 00 00 00 00 00 00 00
20: 00 00 00 00 00 00 00 00 00 00 00 00 8c 16 16 31
30: 00 00 00 00 40 00 00 00 00 00 00 00 0b 01 00 00
 ^ ^
 | |
 0x30 0x34

So 0x34 = 0x40. 0x40 is not 0x10 so we go read 0x40 now

40: 01 50 c3 5b 00 00 00 00 00 00 00 00 00 00 00 00
 ^
 |
 0x40 = 0x01, this is not 0x10 so read the next byte

40: 01 50 c3 5b 00 00 00 00 00 00 00 00 00 00 00 00
 ^
 |
 0x41 = 0x50, so go read that register next

50: 05 70 84 01 00 00 00 00 00 00 00 00 00 00 00 00
 ^
 |
 0x50 = 0x05, this is not 0x10, so go read the next byte.
 The next byte 0x51 = 0x70 so we go read that register next.

70: 10 00 02 00 00 87 04 05 10 20 0b 00 11 5c 03 00
 ^
 |
 At last, 0x70 = 0x10. So now we do 0x70 + 0x10 = 0x80 and go read 0x80.

80: 41 00 11 10 00 00 00 00 00 00 00 00 00 00 00 00
 ^
 |

Last update:
2022/01/15 11:38 linux:system:powersave:aspm https://wiki.oscardegroot.nl/doku.php?id=linux:system:powersave:aspm&rev=1642246727

https://wiki.oscardegroot.nl/ Printed on 2026/01/16 00:45

 0x80 = 0x41
 0x41 = 0b1000001 so this has ASPM L0s on only.

Assuming your root complex has L1 enabled as well already you can force ASPM L1 or tune ASPM off if
it had it on. To change the ASPM settings of the device you would change only the last two bits of the
byte 0x80 here, so keep the other values (OR the values) as follows:

Disables ASPM, enables only L0
sudo setpci -s 03:00.0 0x80.B=0x40

Enable L0s only (this was the existing setting)
sudo setpci -s 03:00.0 0x80.B=0x41

Enable L1 only
sudo setpci -s 03:00.0 0x80.B=0x42

Enable L1 and L0s
sudo setpci -s 03:00.0 0x80.B=0x43

From:
https://wiki.oscardegroot.nl/ - HomeWiki

Permanent link:
https://wiki.oscardegroot.nl/doku.php?id=linux:system:powersave:aspm&rev=1642246727

Last update: 2022/01/15 11:38

https://wiki.oscardegroot.nl/
https://wiki.oscardegroot.nl/doku.php?id=linux:system:powersave:aspm&rev=1642246727

	ASPM on Linux
	Power Mode L0 and L1
	Check current ASPM status
	Enforce Linux kernel ASPM support
	Automated ASPM enabling script
	Enabling ASPM with setpci
	How to read the Link Control Register for ASPM
	Change setting on PCIE controller level
	Change setting on Device level

