
2026/01/15 13:05 1/8 Cgroups V2

HomeWiki - https://wiki.oscardegroot.nl/

Cgroups V2

Introduction

Cgroup v2 provides a unified control system with enhanced resource management capabilities.
Control groups (cgroups), are a Linux kernel feature which allow processes to be organized into
hierarchical groups whose usage of various types of resources can then be limited and monitored. The
kernel's cgroup interface is provided through a pseudo-filesystem called cgroupfs. It provides:

a hierarchy to organize processes
controllers in the kernel

Identify cgroup version

The cgroup version depends on the Linux distribution. To check which cgroup version is used, run:

stat -fc %T /sys/fs/cgroup/

For cgroup v2, the output is cgroup2fs. For cgroup v1, the output is tmpfs

Hierarchy

Current cgroup hierarchy can be seen with systemctl status or systemd-cgls command.

$ systemctl status

● mylinux
 State: running
 Jobs: 0 queued
 Failed: 0 units
 Since: Wed 2019-12-04 22:16:28 UTC; 1 day 4h ago
 CGroup: /
 ├─user.slice
 │ └─user-1000.slice
 │ ├─user@1000.service
 │ │ ├─gnome-shell-wayland.service
 │ │ │ ├─ 1129 /usr/bin/gnome-shell
 │ │ ├─gnome-terminal-server.service
 │ │ │ ├─33519 /usr/lib/gnome-terminal-server
 │ │ │ ├─37298 fish
 │ │ │ └─39239 systemctl status
 │ │ ├─init.scope
 │ │ │ ├─1066 /usr/lib/systemd/systemd --user
 │ │ │ └─1067 (sd-pam)

Last update: 2022/11/20 14:42 linux:system:cgroupsv2 https://wiki.oscardegroot.nl/doku.php?id=linux:system:cgroupsv2&rev=1668955367

https://wiki.oscardegroot.nl/ Printed on 2026/01/15 13:05

 │ └─session-2.scope
 │ ├─1053 gdm-session-worker [pam/gdm-password]
 │ ├─1078 /usr/bin/gnome-keyring-daemon --daemonize --login
 │ ├─1082 /usr/lib/gdm-wayland-session /usr/bin/gnome-session
 │ ├─1086 /usr/lib/gnome-session-binary
 │ └─3514 /usr/bin/ssh-agent -D -a /run/user/1000/keyring/.ssh
 ├─init.scope
 │ └─1 /sbin/init
 └─system.slice
 ├─systemd-udevd.service
 │ └─285 /usr/lib/systemd/systemd-udevd
 ├─systemd-journald.service
 │ └─272 /usr/lib/systemd/systemd-journald
 ├─NetworkManager.service
 │ └─656 /usr/bin/NetworkManager --no-daemon
 ├─gdm.service
 │ └─668 /usr/bin/gdm
 └─systemd-logind.service

cgroup resource usage

The systemd-cgtop command can be used to see the resource usage:

$ systemd-cgtop

Control Group Tasks %CPU Memory Input/s
Output/s
user.slice 540 152,8 3.3G -
-
user.slice/user-1000.slice 540 152,8 3.3G -
-
user.slice/u…000.slice/session-1.scope 425 149,5 3.1G -
-
system.slice 37 - 215.6M -
-

Cgroup Filesystem

The /sys/fs/cgroup/ directory, also called the root control group, contains:

Interface files (starting with cgroup)1.
cgroup.controllers – This shows the supported cgroup controllers.
cgroup.procs – contains the list of PIDs of processes. Attaching a process to a subgroup is
done by writing its PID into the subgroup's cgroup.procs.
cgroup.subtree_control – holds the controllers that are enabled for the immediate
subgroups

Controller-specific files such as cpuset.cpus.effective.2.

2026/01/15 13:05 3/8 Cgroups V2

HomeWiki - https://wiki.oscardegroot.nl/

Directories related to systemd, such as,3.
/sys/fs/cgroup/init.scope,
/sys/fs/cgroup/system.slice, and
/sys/fs/cgroup/user.slice.

root@homeserver:/sys/fs/cgroup# ls -al

dr-xr-xr-x 14 root root 0 jan 20 17:23 .
drwxr-xr-x 7 root root 0 jan 20 17:23 ..
-r--r--r-- 1 root root 0 jan 20 17:23 cgroup.controllers
-rw-r--r-- 1 root root 0 jan 20 17:30 cgroup.max.depth
-rw-r--r-- 1 root root 0 jan 20 17:30 cgroup.max.descendants
-rw-r--r-- 1 root root 0 jan 20 17:23 cgroup.procs
-r--r--r-- 1 root root 0 jan 20 17:30 cgroup.stat
-rw-r--r-- 1 root root 0 jan 20 17:23 cgroup.subtree_control
-rw-r--r-- 1 root root 0 jan 20 17:30 cgroup.threads
-rw-r--r-- 1 root root 0 jan 20 17:30 cpu.pressure
-r--r--r-- 1 root root 0 jan 20 17:30 cpuset.cpus.effective
-r--r--r-- 1 root root 0 jan 20 17:30 cpuset.mems.effective
-r--r--r-- 1 root root 0 jan 20 17:30 cpu.stat
drwxr-xr-x 2 root root 0 jan 20 17:23 dev-hugepages.mount
drwxr-xr-x 2 root root 0 jan 20 17:23 dev-mqueue.mount
drwxr-xr-x 2 root root 0 jan 20 17:23 init.scope
-rw-r--r-- 1 root root 0 jan 20 17:30 io.cost.model
-rw-r--r-- 1 root root 0 jan 20 17:30 io.cost.qos
-rw-r--r-- 1 root root 0 jan 20 17:30 io.pressure
-r--r--r-- 1 root root 0 jan 20 17:30 io.stat
drwxr-xr-x 2 root root 0 jan 20 17:23 lxc.payload.fileserver
drwxr-xr-x 2 root root 0 jan 20 17:23 lxc.payload.test-container
drwxr-xr-x 2 root root 0 jan 20 17:23 lxc.pivot
-r--r--r-- 1 root root 0 jan 20 17:30 memory.numa_stat
-rw-r--r-- 1 root root 0 jan 20 17:30 memory.pressure
-r--r--r-- 1 root root 0 jan 20 17:30 memory.stat
drwxr-xr-x 2 root root 0 jan 20 17:23 sys-fs-fuse-connections.mount
drwxr-xr-x 2 root root 0 jan 20 17:23 sys-kernel-config.mount
drwxr-xr-x 2 root root 0 jan 20 17:23 sys-kernel-debug.mount
drwxr-xr-x 2 root root 0 jan 20 17:23 sys-kernel-tracing.mount
drwxr-xr-x 23 root root 0 jan 20 17:50 system.slice
drwxr-xr-x 4 root root 0 jan 20 17:33 user.slice

Available Controllers

Verify which controllers are supported by the kernel and available in the
/sys/fs/cgroup/cgroup.controllers file:

cat /sys/fs/cgroup/cgroup.controllers

cpuset cpu io memory hugetlb pids rdma

Last update: 2022/11/20 14:42 linux:system:cgroupsv2 https://wiki.oscardegroot.nl/doku.php?id=linux:system:cgroupsv2&rev=1668955367

https://wiki.oscardegroot.nl/ Printed on 2026/01/15 13:05

Enabled Controllers

Check which controller are activated / enabled:

cat /sys/fs/cgroup/cgroup.subtree_control

cpuset cpu io memory hugetlb pids rdma

Enable or disable a specific controllers:

echo "+cpu" >> /sys/fs/cgroup/cgroup.subtree_control

echo "-cpu" >> /sys/fs/cgroup/cgroup.subtree_control

These commands enable controllers for the immediate children groups of the /sys/fs/cgroup/ root
control group. A child group is where you can specify processes and apply control checks to each of
the processes based on your criteria. Users can read the contents of the cgroup.subtree_control file at
any level to get an idea of what controllers are going to be available for enablement in the immediate
child group.

Child Control Group

The /sys/fs/cgroup/ listing above shows some subdirectories (Child Control Groups) like:
lxc.payload.fileserver. New Child Groups can be added by creating a subdirectory in /sys/fs/cgroup.

mkdir /sys/fs/cgroup/example/

The /sys/fs/cgroup/example/ directory defines a child group. The
/sys/fs/cgroup/cgroup.subtree_control file in the root level specifies which enabled controllers apply to
this child group.

When you create the /sys/fs/cgroup/example/ directory, some cgroups-v2 interface files and
controller-specific files are automatically created in the directory. The /sys/fs/cgroup/example/
directory contains:

#ls -al example

drwxr-xr-x 2 root root 0 jan 20 18:20 .
dr-xr-xr-x 15 root root 0 jan 20 18:20 ..
-r--r--r-- 1 root root 0 jan 20 18:20 cgroup.controllers
-r--r--r-- 1 root root 0 jan 20 18:20 cgroup.events
-rw-r--r-- 1 root root 0 jan 20 18:20 cgroup.freeze
-rw-r--r-- 1 root root 0 jan 20 18:20 cgroup.max.depth
-rw-r--r-- 1 root root 0 jan 20 18:20 cgroup.max.descendants
-rw-r--r-- 1 root root 0 jan 20 18:20 cgroup.procs
-r--r--r-- 1 root root 0 jan 20 18:20 cgroup.stat
-rw-r--r-- 1 root root 0 jan 20 18:20 cgroup.subtree_control
-rw-r--r-- 1 root root 0 jan 20 18:20 cgroup.threads

2026/01/15 13:05 5/8 Cgroups V2

HomeWiki - https://wiki.oscardegroot.nl/

-rw-r--r-- 1 root root 0 jan 20 18:20 cgroup.type
-rw-r--r-- 1 root root 0 jan 20 18:20 cpu.max
-rw-r--r-- 1 root root 0 jan 20 18:20 cpu.pressure
-rw-r--r-- 1 root root 0 jan 20 18:20 cpuset.cpus
-r--r--r-- 1 root root 0 jan 20 18:20 cpuset.cpus.effective
-rw-r--r-- 1 root root 0 jan 20 18:20 cpuset.cpus.partition
-rw-r--r-- 1 root root 0 jan 20 18:20 cpuset.mems
-r--r--r-- 1 root root 0 jan 20 18:20 cpuset.mems.effective
-r--r--r-- 1 root root 0 jan 20 18:20 cpu.stat
-rw-r--r-- 1 root root 0 jan 20 18:20 cpu.weight
-rw-r--r-- 1 root root 0 jan 20 18:20 cpu.weight.nice
-r--r--r-- 1 root root 0 jan 20 18:20 hugetlb.1GB.current
-r--r--r-- 1 root root 0 jan 20 18:20 hugetlb.1GB.events
-r--r--r-- 1 root root 0 jan 20 18:20 hugetlb.1GB.events.local
-rw-r--r-- 1 root root 0 jan 20 18:20 hugetlb.1GB.max
-r--r--r-- 1 root root 0 jan 20 18:20 hugetlb.1GB.rsvd.current
-rw-r--r-- 1 root root 0 jan 20 18:20 hugetlb.1GB.rsvd.max
-r--r--r-- 1 root root 0 jan 20 18:20 hugetlb.2MB.current
-r--r--r-- 1 root root 0 jan 20 18:20 hugetlb.2MB.events
-r--r--r-- 1 root root 0 jan 20 18:20 hugetlb.2MB.events.local
-rw-r--r-- 1 root root 0 jan 20 18:20 hugetlb.2MB.max
-r--r--r-- 1 root root 0 jan 20 18:20 hugetlb.2MB.rsvd.current
-rw-r--r-- 1 root root 0 jan 20 18:20 hugetlb.2MB.rsvd.max
-rw-r--r-- 1 root root 0 jan 20 18:20 io.max
-rw-r--r-- 1 root root 0 jan 20 18:20 io.pressure
-r--r--r-- 1 root root 0 jan 20 18:20 io.stat
-rw-r--r-- 1 root root 0 jan 20 18:20 io.weight
-r--r--r-- 1 root root 0 jan 20 18:20 memory.current
-r--r--r-- 1 root root 0 jan 20 18:20 memory.events
-r--r--r-- 1 root root 0 jan 20 18:20 memory.events.local
-rw-r--r-- 1 root root 0 jan 20 18:20 memory.high
-rw-r--r-- 1 root root 0 jan 20 18:20 memory.low
-rw-r--r-- 1 root root 0 jan 20 18:20 memory.max
-rw-r--r-- 1 root root 0 jan 20 18:20 memory.min
-r--r--r-- 1 root root 0 jan 20 18:20 memory.numa_stat
-rw-r--r-- 1 root root 0 jan 20 18:20 memory.oom.group
-rw-r--r-- 1 root root 0 jan 20 18:20 memory.pressure
-r--r--r-- 1 root root 0 jan 20 18:20 memory.stat
-r--r--r-- 1 root root 0 jan 20 18:20 memory.swap.current
-r--r--r-- 1 root root 0 jan 20 18:20 memory.swap.events
-rw-r--r-- 1 root root 0 jan 20 18:20 memory.swap.high
-rw-r--r-- 1 root root 0 jan 20 18:20 memory.swap.max
-r--r--r-- 1 root root 0 jan 20 18:20 pids.current
-r--r--r-- 1 root root 0 jan 20 18:20 pids.events
-rw-r--r-- 1 root root 0 jan 20 18:20 pids.max
-r--r--r-- 1 root root 0 jan 20 18:20 rdma.current
-rw-r--r-- 1 root root 0 jan 20 18:20 rdma.max

The example output shows files specific to the enabled controllers. These controllers are manually
enabled for the root’s (/sys/fs/cgroup/) direct child control groups using the
/sys/fs/cgroup/cgroup.subtree_control file. By default, the newly created child control group inherits

Last update: 2022/11/20 14:42 linux:system:cgroupsv2 https://wiki.oscardegroot.nl/doku.php?id=linux:system:cgroupsv2&rev=1668955367

https://wiki.oscardegroot.nl/ Printed on 2026/01/15 13:05

these resources. The directory also includes general cgroup control interface files such as
cgroup.procs or cgroup.controllers, which are common to all control groups, regardless of enabled
controllers. The files such as memory.high and pids.max relate to the memory and pids controllers,
which are in the root control group (/sys/fs/cgroup/), and are always enabled by default. By default,
the newly created child group inherits access to all of the system’s CPU and memory resources,
without any limits.

Enable the CPU-related controllers in /sys/fs/cgroup/example/ to obtain controllers that are relevant
only to CPU:

echo "+cpu" >> /sys/fs/cgroup/example/cgroup.subtree_control
echo "+cpuset" >> /sys/fs/cgroup/example/cgroup.subtree_control

These commands ensure that the immediate child control group will only have controllers relevant to
regulate the CPU time distribution - not to memory or pids controllers. Create the
/sys/fs/cgroup/example/tasks/ directory:

mkdir /sys/fs/cgroup/example/tasks/

The /sys/fs/cgroup/example/tasks/ directory defines a child group with files that relate purely to cpu
and cpuset controllers.

Optionally, inspect another child control group:

ls -l /sys/fs/cgroup/example/tasks

-r—​r—​r--. 1 root root 0 Jun 1 11:45 cgroup.controllers
-r—​r—​r--. 1 root root 0 Jun 1 11:45 cgroup.events
-rw-r—​r--. 1 root root 0 Jun 1 11:45 cgroup.freeze
-rw-r—​r--. 1 root root 0 Jun 1 11:45 cgroup.max.depth
-rw-r—​r--. 1 root root 0 Jun 1 11:45 cgroup.max.descendants
-rw-r—​r--. 1 root root 0 Jun 1 11:45 cgroup.procs
-r—​r—​r--. 1 root root 0 Jun 1 11:45 cgroup.stat
-rw-r—​r--. 1 root root 0 Jun 1 11:45 cgroup.subtree_control
-rw-r—​r--. 1 root root 0 Jun 1 11:45 cgroup.threads
-rw-r—​r--. 1 root root 0 Jun 1 11:45 cgroup.type
-rw-r—​r--. 1 root root 0 Jun 1 11:45 cpu.max
-rw-r—​r--. 1 root root 0 Jun 1 11:45 cpu.pressure
-rw-r—​r--. 1 root root 0 Jun 1 11:45 cpuset.cpus
-r—​r—​r--. 1 root root 0 Jun 1 11:45 cpuset.cpus.effective
-rw-r—​r--. 1 root root 0 Jun 1 11:45 cpuset.cpus.partition
-rw-r—​r--. 1 root root 0 Jun 1 11:45 cpuset.mems
-r—​r—​r--. 1 root root 0 Jun 1 11:45 cpuset.mems.effective
-r—​r—​r--. 1 root root 0 Jun 1 11:45 cpu.stat
-rw-r—​r--. 1 root root 0 Jun 1 11:45 cpu.weight
-rw-r—​r--. 1 root root 0 Jun 1 11:45 cpu.weight.nice
-rw-r—​r--. 1 root root 0 Jun 1 11:45 io.pressure
-rw-r—​r--. 1 root root 0 Jun 1 11:45 memory.pressure

2026/01/15 13:05 7/8 Cgroups V2

HomeWiki - https://wiki.oscardegroot.nl/

Find cgroup of a process

The cgroup name of a process can be found in /proc/PID/cgroup. For example, the cgroup of the shell:

$ ps
 PID TTY TIME CMD
 3282 pts/2 00:00:00 su
 3288 pts/2 00:00:00 bash
 3968 pts/2 00:00:00 ps

$ cat /proc/3288/cgroup
0::/user.slice/user-1000.slice/session-2.scope

Cgroups with systemd

By default, systemd creates a new cgroup under the system.slice for each service it monitors.

└─system.slice
 ├─sssd.service
 ├─lvm2-lvmetad.service
 ├─rsyslog.service
 ├─systemd-udevd.service
 ├─systemd-logind.service
 ├─systemd-journald.service
 ├─crond.service
 ├─origin-node.service
 ├─docker.service
 ├─dnsmasq.service
 ├─tuned.service
 ├─sshd.service
 ├─NetworkManager.service
 ├─dbus.service
 ├─polkit.service

You can change this behavior by editing the systemd service file. There are three options with regard
to cgroup management with systemd:

Editing the service file itself.1.
Using drop-in files.2.
Using systemctl set-property commands, which are the same as manually editing the files, but3.
systemctl creates the required entries for you.

Editing service files

Let's edit the unit file itself. To do this, add the following line to the .service file:

Last update: 2022/11/20 14:42 linux:system:cgroupsv2 https://wiki.oscardegroot.nl/doku.php?id=linux:system:cgroupsv2&rev=1668955367

https://wiki.oscardegroot.nl/ Printed on 2026/01/15 13:05

Slice=my_slice.slice

After this it is no longer attached to the system.slice but under it's own slice:

Control group /:
├─my_beautiful_slice.slice
│ └─cat.service
│ └─4123 /usr/bin/cat /dev/urandom

Note about “nesting” of cgroups: systemd interprets nested cgroups. Children are declared in the
following fashion: “-”.slice. Since systemd attempts to be helpful, if a parent does not exist, systemd
creates it for you. So if we use the “-” dash symbol in the name (my-nested-slice) it will look like:

Control group /:
├─my.slice
│ └─my-nested.slice
│ └─my-nested-slice.slice
│ └─cat.service
│ └─4010 /usr/bin/cat /dev/urandom

Using drop-in files

Drop-in files for systemd are fairly trivial to set up. Start by making an appropriate directory based on
your service's name in /lib/systemd/system. In the cat example, run the following command:

mkdir -p /etc/systemd/system/cat.service.d/

These files can be organized any way you like them. They are actioned based on numerical order, so
you should name your configuration files something like 10-CPUSettings.conf. All files in this directory
should have the file extension .conf and require you to run systemctl daemon-reload every time you
adjust one of these files.

I have created two drop-in files to show how you can split out different configurations. The first is 00-
slice.conf. As seen below, it sets up the default options for a separate slice for the cat service:

[Service] Slice=AWESOME.slice MemoryAccounting=yes CPUAccounting=yes

From:
https://wiki.oscardegroot.nl/ - HomeWiki

Permanent link:
https://wiki.oscardegroot.nl/doku.php?id=linux:system:cgroupsv2&rev=1668955367

Last update: 2022/11/20 14:42

https://wiki.oscardegroot.nl/
https://wiki.oscardegroot.nl/doku.php?id=linux:system:cgroupsv2&rev=1668955367

	Cgroups V2
	Introduction
	Identify cgroup version
	Hierarchy
	cgroup resource usage
	Cgroup Filesystem
	Available Controllers
	Enabled Controllers
	Child Control Group
	Find cgroup of a process

	Cgroups with systemd
	Editing service files
	Using drop-in files

