2026/01/16 00:45 1/6 ASPM on Linux

ASPM on Linux

ASPM is a PCI-E enhancement. It allows for a device to go completely into electrically idle state,
meaning it will not send or receive electrical signals for a while. While ASPM brings a reduction in
power consumption, it can also result in increased latency as the serial bus needs to be 'woken up'
from low-power mode, possibly reconfigured and the host-to-device link re-established. This is known
as ASPM exit latency and takes up valuable time which can be annoying to the end user if it is too
obvious when it occurs. This may be acceptable for mobile computing, however, when battery life is
critical.

Power Mode LO and L1

Currently, two low power modes are specified by the PCle 2.0 specification; LOs and L1 mode. The first
mode (LOs) concerns setting low power mode for one direction of the serial link only, usually
downstream of the PHY controller. The second mode (L1) is bidirectional and results in greater power
reductions though with the penalty of greater exit latency.

PCIE cards should always support ASPM, what the ASPM requirements says today is that L1 is
mandatory and LOs is optional unless the formfactor specifications explicitly requies it. Not sure which
form factors explicitly require LOs (anyone?). Additionally software must not enable LOs in either
direction on a given Link unless components on both sides of the Link each support LOs.

The way it typically works internally on endpoints (devices) is that there are idle timers (counters) in
the chipset. There is a set point at which the PCle link is idle enough to enter LOs, and a second point
at which we're idle enough to enter L1. A device could potentially 'support' LOs but internally the
timers could be set such that LOs and L1 happen at the same time or LOs happens after L1, so the link
will essentially never enter LOs. ASPM compliance may vary by device, ASPM specification has varied
as new releases have been

Check current ASPM status

You can verify by using Ispci -vvv as root and check the LnkCtl attribute of the devices.
lspci -vvv

In case of enabled:
LnkCt1l: ASPM LOs L1 Enabled
In case of disabled:
LnkCtl: ASPM Disabled; RCB 128 bytes Disabled-

Why is ASPM disabled for my device? ASPM should automatically be negotiated by the BIOS based on
all the endpoints connected on a root complex. IF your device has ASPM disabled it is likely because:

e the BIOS determined that needed to happen
e PCIE requires ASPM but LOs is optional so you might have LOs disabled and only L1 enabled
e you have a buggy BIOS

HomeWiki - https://wiki.oscardegroot.nl/

Last update: 2022/01/15 11:38 linux:powersave:aspm https://wiki.oscardegroot.nl/doku.php?id=linux:powersave:aspm&rev=1565966270

e you have no BIOS and your systems programmers didn't address ASPM yet

Enforce Linux kernel ASPM support

An Operating System should not need to muck with ASPM, the BIOS would have dealt with the
capability exchanges between the root complex and the different endpoints. Of course, BIOSes are
buggy though - so the Linux kernel does have the capability to oversee and review the capabilities by
itself and overrule the BIOS. ASPM support in the Linux kernel is also used to expose ASPM capabilities
for PCIE devices to userspace (need confirmation, | see this being done in the code, but makes no
sense).

nano /etc/default/grub

Add pcie aspm=force to the kernel parameter list:
GRUB _CMDLINE LINUX DEFAULT="quiet pcie aspm=force"

update-grub
reboot

This forces ASPM in kernel while it can still remain disabled in hardware and not work. To check
whether this is the case the dmesg | grep ASPM command can be used and if that is the case,
hardware-specific Wiki article should be consulted. To adjust to powersave do (the following command
will not work unless enabled in the kernel):

echo powersave > /sys/module/pcie aspm/parameters/policy

By default it looks like this:

cat /sys/module/pcie aspm/parameters/policy

[default] performance powersave

Automated ASPM enabling script

Script to automate ACPM enabling by Luis R. Rodriguez. Automated script

Enabling ASPM with setpci

The PCIE Link Control Register is properly parsed with Ispci -vvv but you might want to know exactly
how to determine if your device has ASPM support manually. This is required to know exactly where
to poke a PCIE device to force enable ASPM manually for a specific root complex or endpoint device.
This section covers how to do this.

https://wiki.oscardegroot.nl/ Printed on 2026/01/16 00:45

https://wiki.oscardegroot.nl/doku.php?id=linux:powersave:aspm:script

2026/01/16 00:45 3/6 ASPM on Linux

How to read the Link Control Register for ASPM

The Link Control Register on the PCI device tells us if ASPM is enabled and what ASPM settings will be
used. How to find the register for the Link Control Register for any PCIE device is explained below -
but first lets review what to look out for on the register. Look at the last byte of the Link Control
Register on the PCIE device the values to decode for ASPM are as follows:

0b0O = LO only
0b01 = LOs only
0b10 = L1 only
0bll = L1 and LOs

We have to enable ASPM on two levels:

1. The PCIE controller (root complex)
2. The device itself

Change setting on PCIE controller level

First find the bus address for the device you want to check for. On a box with Atheros you might get:
lspci | grep -i atheros

03:00.0 Network controller: Atheros Communications Inc. Device 0030 (rev 01)
The 03:00.0 is the bus address. Now first check on which root complex this device sits on, by using
Ispci -t. You do this to first find the Link Control Register settings of your root complex. Only after

you've tuned that should you tune the card. You should unload the module or turn the device off prior
to tweaking with it. For the root complex this should not be needed.

lspci -t

-[0000:00]-+-00.0
+-02.0
+-02.1
+-03.0
+-1b.0

+-1c.0-[0000:02] - -
+-1c.1-[0000:03]----00.0
+-1c.2-[0000:04] - -
+-1c.3-[0000:05-0c] - -
+-1c.4-[0000:0d-14] - -
+-1d.0

\-1f.3

In this case we see 03:00.0 sits on 00:1c.1 so you can now do Ispci -s 00:1c.1 -xxx on that root
complex and to get the PCI config space of that device. The PCIE spec has a fun little algorithm to find
the Link Control Register out of the PCI config space. The logic is as follows:

HomeWiki - https://wiki.oscardegroot.nl/

Last update: 2022/01/15 11:38 linux:powersave:aspm https://wiki.oscardegroot.nl/doku.php?id=linux:powersave:aspm&rev=1565966270

e Read 0x34 and read the register that points to

If that value is not 0x10 then read the next byte (0x35) and go read that register

If that register is not 0x10 then read the next byte and go read that register

Repeat this until you find a register that has 0x10

¢ Once you find the register with 0x10 then add 0x10 to the final register you were reading

e The Link Control Register is this final register + 0x10 Lets analyze a real world example of a
root complex, specifically the one of the root complex above.

lspci -s 00:1c.1 -xxX

00:1c.1 PCI bridge: Intel Corporation 82801H (ICH8 Family) PCI Express Port
00: 86 80 41 28 07 05 10 00 03 00 04 06 10 00 81 0O
10: 00 00 00 OGO OO 0O 00 00 00 03 03 00 30 30 00 00
20: 00 dc 30 df el df el df 00 00 00 GO GO GO 0O 0O
30: 00 00 00 00 40 00 00 00 00 0O 00 GO Gb 02 04 00
40: 10 80 41 01 cO 8f 00 00 00 00 10 60 11 2c 11 02
50: 40 00 11 30 eO a0 18 00 00 00 48 01 G0 GO OO 0O
60: 00 00 00 00 00 OO0 0O OO0 00 0O 0O GO GO GO 0O 00
70: 00 00 00 00 00 00 00 00 00 0O GO GO GO GO OO 0O
80: 05 90 01 00 Oc 30 eO fe 69 41 00 GO GO 0O OO 0O

So first read 0x34, and we see it is 0x40 (do not hop to the next byte here). We read 0x40 and see it
is 0x10. Now we add 0x40 + 0x10 = 0x50. We read 0x50. 0x50 is the value of the Link Control
Register. 0x50 has a value of 0x40. This means only LO is enabled so ASPM is completely disabled. To
tweak ASPM for this root complex then we we would do have to first keep the original value and then
OR it with our new ASPM settings. Note: as it turns out 0x50 is also used for the Link Control Register
for ICH6, ICH7, ICH8, ICH9.

Disables ASPM, enables only LO (this was the existing setting)
sudo setpci -s 00:1c.1l Ox50.B=0x40

Enable LOs only
sudo setpci -s 00:1c.1 0x50.B=0x41

Enable L1 only
sudo setpci -s 00:1c.1 0x50.B=0x42

Enable L1 and LOs
sudo setpci -s 00:1c.1 0x50.B=0x43

Change setting on Device level

Now - lets get on to tweaking your device. Since you have the bus address of your 802.11 device you
can now use this to get its respective PCl config space in hex.

lspci -s 03:00.0 -xxx

03:00.0 Network controller: Atheros Communications Inc. Device 0030 (rev 01)

https://wiki.oscardegroot.nl/ Printed on 2026/01/16 00:45

2026/01/16 00:45

5/6

ASPM on Linux

00:
10:
20:
30:
40:
50:
60:
70:
80:

This example

00:
10:
20:
30:

So

40:

40:

50:

70:

80:

8c
04
00
00
01
05
00
10
41

8c
04
00
00

I
0x3

0x3
01

I
0x4

01

16
00
00
00
50
70
00
00
00

16
00
00
00
0
4 =

50

0 =
50

30
3e
00
00
c3
84
00
02
11

is a little more complicated so we'll analyze it line by line:

30
3e
00
00

00
df
00
00
5b
01
00
00
10

00
df
00
00

0x40.

c3

5b

0x01,

c3

5b

03
00
00
40
00
00
00
00
00

03
00
00
40

01
00
00
00
00
00
00
87
00

10
00
00
00
00
00
00
04
00

40
00
00
00
00
00
00
05
00

01 10 40
00 00 00
00 00 00
00 00 00

0x34

0x40 is not

00 00 00 00

this is not

00 00 00 00

01
00
00
00
00
00
00
10
00

01
00
00
00

0x10 so we go read 0x40 now

00
00
00
00
00
00
00
20
00

80
00
00
00
00
00
00
Ob
00

02
00
00
00
00
00
00
00
00

10
00
8c
0b
00
00
00
11
00

00
00
16
01
00
00
00
5c¢
00

00
00
16
00
00
00
00
03
00

00
00
31
00
00
00
00
00
00

00 80 02 10 00 00 00
00 00 00 00 00 00 00
00 00 00 8c 16 16 31
00 00 00 Ob 01 00 00

00 00 00 00 00 00 00 00

0x10 so read the next byte

00 00 00 00 00 00 00 00

0x41 = 0x50, so go read that register next

05 70 84 01 0O 00 00 0O 00 GO 0O OO OO 00 GO 00

N

0x50 = 0x05, this is not 0x10, so go read the next byte.
The next byte 0x51 = 0x70 so we go read that register next.

10 00 02 00 00 87 04 05 10 20 O6b 060 11 5c 03 00

At last, 0x70 = 0x10. So now we do Ox70 + O0x10 = Ox80 and go read 0x80.

41 00 11 10 GO 0O 00 0O 00 GO 0O 00 OO 00 GO 00

N

I
Ox

Ox

80
41

0x41
0b10EOO01 so this has ASPM LOs on only.

HomeWiki - https://wiki.oscardegroot.nl/

Last update: 2022/01/15 11:38 linux:powersave:aspm https://wiki.oscardegroot.nl/doku.php?id=linux:powersave:aspm&rev=1565966270

Assuming your root complex has L1 enabled as well already you can force ASPM L1 or tune ASPM off if
it had it on. To change the ASPM settings of the device you would change only the last two bits of the
byte 0x80 here, so keep the other values (OR the values) as follows:

Disables ASPM, enables only LO
sudo setpci -s 03:00.0 0x80.B=0x40

Enable LOs only (this was the existing setting)
sudo setpci -s 03:00.0 0x80.B=0x41

Enable L1 only
sudo setpci -s 03:00.0 0x80.B=0x42

Enable L1 and LOs
sudo setpci -s 03:00.0 0x80.B=0x43

From:
https://wiki.oscardegroot.nl/ - HomeWiki

Permanent link:
https://wiki.oscardegroot.nl/doku.php?id=linux:powersave:aspm&rev=1565966270

Last update: 2022/01/15 11:38

https://wiki.oscardegroot.nl/ Printed on 2026/01/16 00:45

https://wiki.oscardegroot.nl/
https://wiki.oscardegroot.nl/doku.php?id=linux:powersave:aspm&rev=1565966270

	ASPM on Linux
	Power Mode L0 and L1
	Check current ASPM status
	Enforce Linux kernel ASPM support
	Automated ASPM enabling script
	Enabling ASPM with setpci
	How to read the Link Control Register for ASPM
	Change setting on PCIE controller level
	Change setting on Device level

