
2026/01/15 13:37 1/15 Fail2Ban Setup

HomeWiki - https://wiki.oscardegroot.nl/

Fail2Ban Setup

Introduction

When operating web and email servers, it is important to implement security measures to protect
your site and users. Any publicly accessible password prompt is likely to attract brute force attempts
from malicious users and bots. Setting up fail2ban can help alleviate this problem. When users
repeatedly fail to authenticate to a service (or engage in other suspicious activity), fail2ban can issue
a temporary bans on the offending IP address by dynamically modifying the running firewall policy.
Each fail2ban “jail” operates by checking the logs written by a service for patterns which indicate
failed attempts. Setting up fail2ban to monitor Nginx logs is fairly easy using the some of included
configuration filters and some we will create ourselves.

Install

Note: we are installing fail2ban in the individual LXC containers and not on the host. Because
fail2ban need IP-tables working to exclude attackers and IP-tables seem to work on LXC container
level. Install fail2ban into the Mail and Web Server containers:

apt-get update
apt-get install fail2ban

This will install the software. It starts automatically after installation. Also nftables will be installed. To
check the services status use this command:

systemctl status fail2ban
systemctl status nftables

Configuration

The fail2ban.conf file configures some basic operational settings like the way the daemon logs info,
and the socket and pid file it will use. The supplied /etc/fail2ban/jail.conf file is the main provided
resource for this. The remaining configuration, however takes place in the files that define the “jails”.

/etc/fail2ban/fail2ban.local

To make modifications, we need to copy this file to /etc/fail2ban/fail2ban.local. This will prevent our
changes from being overwritten if a package update provides a new default file:

sudo cp /etc/fail2ban/fail2ban.conf /etc/fail2ban/fail2ban.local

Common options to change in the default fail2ban.local file are:

Last update: 2023/09/05 19:06 linux:apps:fail2ban https://wiki.oscardegroot.nl/doku.php?id=linux:apps:fail2ban&rev=1693940762

https://wiki.oscardegroot.nl/ Printed on 2026/01/15 13:37

Logtarget: we prefer Fail2ban to write logs to: /var/log/fail2ban.log. Change the line: logtarget =1.
SYSLOG to logtarget = /var/log/fail2ban.log
To avoid startup warnings on ipv6 we added option: allowipv6 = auto2.

[DEFAULT]

OdG: added 03/09/2023 to avoid startup warning on ipv6
allowipv6 = auto

Option: loglevel
Notes.: Set the log level output.
CRITICAL
ERROR
WARNING
NOTICE
INFO
DEBUG
Values: [LEVEL] Default: INFO
#
loglevel = WARNING

Option: logtarget
Notes.: Set the log target. This could be a file, SYSTEMD-JOURNAL, SYSLOG,
STDERR or STDOUT.
Only one log target can be specified.
If you change logtarget from the default value and you are
using logrotate -- also adjust or disable rotation in the
corresponding configuration file
(e.g. /etc/logrotate.d/fail2ban on Debian systems)
Values: [STDOUT | STDERR | SYSLOG | SYSOUT | SYSTEMD-JOURNAL | FILE]
Default: STDERR
#
logtarget = /var/log/fail2ban.log

Option: syslogsocket
Notes: Set the syslog socket file. Only used when logtarget is SYSLOG
auto uses platform.system() to determine predefined paths
Values: [auto | FILE] Default: auto
syslogsocket = auto

Option: socket
Notes.: Set the socket file. This is used to communicate with the daemon.
Do
not remove this file when Fail2ban runs. It will not be possible
to
communicate with the server afterwards.
Values: [FILE] Default: /var/run/fail2ban/fail2ban.sock
#
socket = /var/run/fail2ban/fail2ban.sock

Option: pidfile

2026/01/15 13:37 3/15 Fail2Ban Setup

HomeWiki - https://wiki.oscardegroot.nl/

Notes.: Set the PID file. This is used to store the process ID of the
fail2ban server.
Values: [FILE] Default: /var/run/fail2ban/fail2ban.pid
#
pidfile = /var/run/fail2ban/fail2ban.pid

Option: allowipv6
Notes.: Allows IPv6 interface:
Default: auto
Values: [auto yes (on, true, 1) no (off, false, 0)] Default: auto
#allowipv6 = auto

Options: dbfile
Notes.: Set the file for the fail2ban persistent data to be stored.
A value of ":memory:" means database is only stored in memory
and data is lost when fail2ban is stopped.
A value of "None" disables the database.
Values: [None :memory: FILE] Default: /var/lib/fail2ban/fail2ban.sqlite3
dbfile = /var/lib/fail2ban/fail2ban.sqlite3

Options: dbpurgeage
Notes.: Sets age at which bans should be purged from the database
Values: [SECONDS] Default: 86400 (24hours)
dbpurgeage = 1d

Options: dbmaxmatches
Notes.: Number of matches stored in database per ticket (resolvable via
tags <ipmatches>/<ipjailmatches> in actions)
Values: [INT] Default: 10
dbmaxmatches = 10

[Definition]

[Thread]

Options: stacksize
Notes.: Specifies the stack size (in KiB) to be used for subsequently
created threads,
and must be 0 or a positive integer value of at least 32.
Values: [SIZE] Default: 0 (use platform or configured default)
#stacksize = 0

Jails

The jail config file also specifies the available jails that will monitor our application logs for specific
behavior patterns.

Last update: 2023/09/05 19:06 linux:apps:fail2ban https://wiki.oscardegroot.nl/doku.php?id=linux:apps:fail2ban&rev=1693940762

https://wiki.oscardegroot.nl/ Printed on 2026/01/15 13:37

/etc/fail2ban/jail.local

The supplied /etc/fail2ban/jail.conf file is the main provided resource for this. To make
modifications, we need to copy this file to /etc/fail2ban/jail.local. This will prevent our changes from
being overwritten if a package update provides a new default file:

 # cp /etc/fail2ban/jail.conf /etc/fail2ban/jail.local
 # nano /etc/fail2ban/jail.local

Each jail within the configuration file is marked by a header containing the jail name in square
brackets (every section but the [DEFAULT] section indicates a specific jail’s configuration). By default,
only the [ssh] jail is enabled. We should start by evaluating the defaults set within the file to see if
they suit our needs. These will be found under the [DEFAULT] section within the file. These items set
the general policy and can each be overridden in specific jails. Look at the following directives:

ignoreip:It is a good idea to add your own IP address or network to the list of exceptions to
avoid locking yourself out. This is less of an issue with web server logins though if you are able
to maintain shell access, since you can always manually reverse the ban. You can add
additional IP addresses or networks delimited by a space, to the existing list.
bantime: controls how many seconds an offending member is banned for. It is ideal to set this
to a long enough time to be disruptive to a malicious actor’s efforts, while short enough to allow
legitimate users to rectify mistakes. By default, this is set to (10 minutes). Increase or decrease
this value as you see fit.
findtime: specifies an amount of time in seconds that maxretry attemps are allowed before
blocking
maxretry: directive indicates the number of attempts to be tolerated within that time. If a
client makes more than maxretry attempts within the amount of time set by findtime, they will
be banned.
backend: This entry specifies how fail2ban will monitor log files. The setting of auto means that
fail2ban will try pyinotify, then gamin, and then a polling algorithm based on what’s available.
usedns: This defines whether reverse DNS is used to help implement bans. Setting this to “no”
will ban IPs themselves instead of hostnames. The “warn” setting will attempt to use reverse-
DNS to look up the hostname and ban that way, but will log the activity for review.
destemail: This is the address that will be sent notification mail if configured your action to
mail alerts.
sendername: This will be used in the email from field for generated notification emails
banaction: This sets the action that will be used when the threshold is reached. There is
actually the name of a file located in /etc/fail2ban/action.d/ called iptables-multiport.conf. This
handles the actual iptables manipulation to ban an IP address. We will look at this later.
mta: This is the mail transfer agent that will be used to send notification emails.
protocol: This is the type of traffic that will be dropped when an IP ban is implemented. This is
also the type of traffic that is sent to the new iptables chain.
chain: This is the chain that will be configured with a jump rule to send traffic to the fail2ban
funnel.

[DEFAULT]
. . .
ignoreip = 127.0.0.1/8 your_home_IP
ignoreip = 127.0.0.1/8 54.15.55.01
bantime = 3600

2026/01/15 13:37 5/15 Fail2Ban Setup

HomeWiki - https://wiki.oscardegroot.nl/

findtime = 3600
maxretry = 6
. . .
banaction = nftables-multiport
banaction_allports = nftables-allports
. . .

Any of these parameters in the [DEFAULT] section can be overruled in the individual [JAIL] sections.

Debian default Jails

On Debian only ssh is enabled via a file in: /etc/fail2ban/jail.d/defaults-debian.conf. Since we
prefer to maintain our jails in jail.local. Remove this file.

cat /etc/fail2ban/jail.d/defaults-debian.conf/defaults-debian.conf
--
[sshd]
enabled = true

rm /etc/fail2ban/jail.d/defaults-debian.conf/defaults-debian.conf

Systemd Journal

On modern systemd-based distros, like newer releases of Debian services like sshd logs to the
systemd journal. There is no logfile anymore in /var/log. This can cause jail2ban.service to terminate
with an error: “ERROR Failed during configuration: Have not found any log file for sshd jail”. To solve
this tell fail2ban that it should use systemd logging (backend = systemd):

nano /etc/fail2ban/jail.local

...
[sshd]
port = ssh
logpath = %(sshd_log)s
#backend = %(sshd_backend)s
backend = systemd
...

Filters

The jails section in /etc/fail2ban/jail.local file enumerates the available jails. The names between
brackets [Jail-name] refer to a filter file in the /etc/fail2ban/filter.d directory. Files in this directory
have the *.conf extension and contain failregex specifications that are used to scan the logs.

Last update: 2023/09/05 19:06 linux:apps:fail2ban https://wiki.oscardegroot.nl/doku.php?id=linux:apps:fail2ban&rev=1693940762

https://wiki.oscardegroot.nl/ Printed on 2026/01/15 13:37

www-login-fail.conf

We have developed one custom filter file to monitor failed login attempts in our website.

nano /etc/fail2ban/filter.d/www-login-fail.conf

Fail2Ban filter to catch:
1) Unknown user login attempts
2) Incorrect password attempts www.oscardegroot.nl
#
[INCLUDES]
Load regexes for filtering
before =

[Definition]

failregex =
^.+Login\sattempt\suser.+incorrect\spassword.+client:\s<HOST>.+,\sserver.+$
 ^.+Login\sattempt\sip\[<HOST>\].+$

ignoreregex =

datepattern =

fail2ban-regex

The correctness of filter files with regex expressions can be tested with:

fail2ban-regex
fail2ban-regex inline

fail2ban-regex

The fail2ban-regex command line tool offers a way of testing if a regex is working as expected. You
can use it as follows:

fail2ban-regex <logpath> <filterpath>

Here is a sample of it in use.

fail2ban-regex /var/lib/docker/containers/7c2442*/*-json.log
/etc/fail2ban/filter.d/nginx-noscript.conf

And a sample output report is shown below.

Running tests
=============

2026/01/15 13:37 7/15 Fail2Ban Setup

HomeWiki - https://wiki.oscardegroot.nl/

Use failregex filter file : nginx-noscript, basedir: /etc/fail2ban
Use log file : /var/lib/docker/containers/94dc5*/94dc5*-json.log
Use encoding : UTF-8

Results
=======
Failregex: 233 total
|- #) [# of hits] regular expression
| 1) [233] ^{"log":"<HOST> -.*GET.*(\.php|\.asp|\.exe|\.pl|\.cgi|\.scgi)
`-

Ignoreregex: 0 total

Date template hits:
|- [# of hits] date format
| [724] Day(?P<_sep>[-/])MON(?P=_sep)ExYear[
:]?24hour:Minute:Second(?:\.Microseconds)?(?: Zone offset)?
`-

Lines: 724 lines, 0 ignored, 233 matched, 491 missed
[processed in 0.10 sec]

Notice towards the end of the report, it states 233 matched, 491 missed. This means that the filter
was able to match 233 lines and 491 were not applicable. This is a good indication that the regex is
matching and working.

fail2ban-regex inline

Below is the syntax of how to use it.

fail2ban-regex '<logline>' '<regex>'

And below is a real life example.

fail2ban-regex '{"log":"111.22.333.444 47.95.1.195 - - [05/Jul/2018:21:42:40
+0000] \"GET /phpMyadmin_bak/index.php HTTP/1.1\" 503 213 \"-\"
\"Mozilla/5.0\"\n","stream":"stdout","time":"2018-07-05T21:42:
40.24318153Z"}' '{"log":"<HOST>.*GET.*.php.*'

The sample below specifies a single log file entry:

'{“log”:“111.22.333.444 47.95.1.195 - - [05/Jul/2018:21:42:40 +0000] \”GET
/phpMyadmin_bak/index.php HTTP/1.1\“ 503 213 \”-\“
\”Mozilla/5.0\“\n”,“stream”:“stdout”,“time”:“2018-07-05T21:42:40.24318153Z”}'

and the regex {“log”:“<HOST>.*GET.*.php.*' is used to verify if it works.

Below is the sample report:

Running tests

Last update: 2023/09/05 19:06 linux:apps:fail2ban https://wiki.oscardegroot.nl/doku.php?id=linux:apps:fail2ban&rev=1693940762

https://wiki.oscardegroot.nl/ Printed on 2026/01/15 13:37

=============
Use failregex line : {"log":"<HOST>.*GET.*.php.*
Use single line : {"log":"111.22.333.444 47.95.1.195 - - [05/Jul/201...

Results
=======
Failregex: 1 total
|- #) [# of hits] regular expression
| 1) [1] {"log":"<HOST>.*GET.*.php.*
`-

Ignoreregex: 0 total

Date template hits:
|- [# of hits] date format
| [1] Day(?P<_sep>[-/])MON(?P=_sep)ExYear[
:]?24hour:Minute:Second(?:\.Microseconds)?(?: Zone offset)?
`-

Lines: 1 lines, 0 ignored, 1 matched, 0 missed
[processed in 0.03 sec]

Actions

This file is responsible for setting up the firewall with a structure that allows easy modifications for
banning malicious hosts, and for adding and removing those hosts as necessary. It is located in the
following directory: /etc/fail2ban/action.d. E.g. the action that our SSH service invokes is called
iptables-multiport. Open the associated file now:

sudo nano /etc/fail2ban/action.d/iptables-multiport.conf

With the comments removed, this file looks something like this:

[INCLUDES]
before = iptables-blocktype.conf

[Definition]
actionstart = iptables -N fail2ban-<name>
 iptables -A fail2ban-<name> -j RETURN
 iptables -I <chain> -p <protocol> -m multiport --dports <port>
-j fail2ban-<name>

actionstop = iptables -D <chain> -p <protocol> -m multiport --dports <port>
-j fail2ban-<name>

actioncheck = iptables -n -L <chain> | grep -a 'fail2ban-<name>[\t]'

actionban = iptables -I fail2ban-<name> 1 -s <ip> -j <blocktype>

2026/01/15 13:37 9/15 Fail2Ban Setup

HomeWiki - https://wiki.oscardegroot.nl/

actionunban = iptables -D fail2ban-<name> -s <ip> -j <blocktype>

[Init]
name = default
port = ssh
protocol = tcp
chain = INPUT

Ban IP Range (subnet)

In some cases spammers have several systems infected in a specific subnet. By using different
alternating IP nummers in this subnet, they can avoid Fail2Ban detection. In these cases it could be
helpful to block a whole subnet range at once. We created an adapted action file for nftables-
subnet.conf that was derived from nftables.conf.

cp /etc/fail2ban/action.d/nftables-subnet.conf
/etc/fail2ban/action.d/nftables-subnet.conf
nano /etc/fail2ban/action.d/nftables-subnet.conf
--

The following changes have been applied
<code>
. . .
Add the "flags interval" needed by nftables to allow specifying a subnet
mask
 _nft_add_set = <nftables> add set <table_family> <table> <addr_set> \{
type <addr_type>\; \}
into
 _nft_add_set = <nftables> add set <table_family> <table> <addr_set> \{
type <addr_type>\;flags interval\;\}
. . .
Add the <addr_subnet> in the line that adds records/elements in the nft set
 actionban = <nftables> add element <table_family> <table> <addr_set> \{
<ip> \}
into
 actionban = <nftables> add element <table_family> <table> <addr_set> \{
<ip>\/<addr_subnet> \}
. . .
At the bottom of the file add the following subnet specifiers to the [INIT]
and [Init?family=inet6]:
[INIT] add:
 addr_subnet = 24
[Init?family=inet6]
 addr_subnet = 56

Now we need to add this custom action to our jail in: /etc/fail2ban/jail.local. Add the following line
to the specific jail: banaction = nftables-subnet[type=multiport]. For example:

[www-login-fail]

Last update: 2023/09/05 19:06 linux:apps:fail2ban https://wiki.oscardegroot.nl/doku.php?id=linux:apps:fail2ban&rev=1693940762

https://wiki.oscardegroot.nl/ Printed on 2026/01/15 13:37

enabled = true
port = http,https
logpath = /var/log/nginx/error.www.log
findtime = 900
maxretry = 3
banaction = nftables-subnet[type=multiport]

Restart & activating Changes

Any changes made in jail.local a restart of Fail2ban is required. Below are commands which will
restart the service.

 systemctl restart fail2ban
 or
 fail2ban-client reload

If there is anything wrong with the fail or filter, an error would be reported.

Monitor Status

There are 2 options to check the current status of jails and banned clients:

fail2ban-client1.
nft list ruleset2.

fail2ban-client

You can see an overview of your enabled jails by using the fail2ban-client command. You should see a
list of all of the jails you enabled:

fail2ban-client status

Status
|- Number of jail: 5
`- Jail list: nextcloud, nginx-bad-request, nginx-botsearch, sshd, www-
login-fail

If you want to see the details of the bans being enforced by any one jail, it is probably easier to use
the fail2ban-client again:

fail2ban-client status www-login-fail

Status for the jail: www-login-fail
|- Filter
| |- Currently failed: 0
| |- Total failed: 3

2026/01/15 13:37 11/15 Fail2Ban Setup

HomeWiki - https://wiki.oscardegroot.nl/

| `- File list: /var/log/nginx/error.www.log
`- Actions
 |- Currently banned: 0
 |- Total banned: 2
 `- Banned IP list:

NFtables

You can look at nftables to see that fail2ban has modified your firewall rules to create a framework for
banning clients. Even with no previous firewall rules, you would now have a framework enabled that
allows fail2ban to selectively ban clients by adding them to purpose-built chains:

#nft list ruleset

table inet f2b-table {
 set addr-set-www-login-fail {
 type ipv4_addr
 flags interval
 elements = { 192.168.178.0/24 }
 }

 set addr6-set-www-login-fail {
 type ipv6_addr
 flags interval
 elements = { fdaa:66:67::/56 }
 }

 chain f2b-chain {
 type filter hook input priority filter - 1; policy accept;
 tcp dport { 80, 443 } ip saddr @addr-set-www-login-fail reject with
icmp port-unreachable
 tcp dport { 80, 443 } ip6 saddr @addr6-set-www-login-fail reject
with icmpv6 port-unreachable
 }
}

Unbanning

you can manually un-ban your IP address with the fail2ban-client by typing:

fail2ban-client set nginx-http-auth unbanip 111.111.111.111

Or for unbanning all jails at once:

fail2ban-client unban --all

Last update: 2023/09/05 19:06 linux:apps:fail2ban https://wiki.oscardegroot.nl/doku.php?id=linux:apps:fail2ban&rev=1693940762

https://wiki.oscardegroot.nl/ Printed on 2026/01/15 13:37

Cleaning

The above unbanning commands will remove the IP's from the nftables firewall, but the rule and table
structures will remain in the nfttables firewall. If you want to clean / reset everything:

fail2ban-client stop www-login-fail

The following command will only clear the nftables structures, but this could lead to errors in jail2bin
logs.

nft clear ruleset

Optional: Setting Up Mail Notifications

You can enable email notifications if you wish to receive mail whenever a ban takes place. To do so,
you will have to first set up an MTA on your server so that it can send out email. To learn how to use
Postfix for this task, follow this guide. Once you have your MTA set up, you will have to adjust some
additional settings within the [DEFAULT] section of the /etc/fail2ban/jail.local file. Start by setting
the mta directive. If you set up Postfix, like the above tutorial demonstrates, change this value to
“mail”. You need to select the email address that will be sent notifications. Modify the destemail
directive with this value. The sendername directive can be used to modify the “Sender” field in the
notification emails. A fail2ban “action” is the procedure followed when a client fails authentication too
many times. The default action (called action_) is to simply ban the IP address from the port in
question. However, there are two other pre-made actions that can be used if you have mail set up.
You can use the action_mw action to ban the client and send an email notification to your configured
account with a “whois” report on the offending address. You could also use the action_mwl action,
which does the same thing, but also includes the offending log lines that triggered the ban:

[DEFAULT]
. . .
mta = mail
. . .
destemail = youraccount@email.com
sendername = Fail2BanAlerts
. . .
action = %(action_mwl)s
. . .

NGINX

We enables the following 2 default Debian fail2ban installation jails for Nginx:

nginx-bad-request.conf: filter to match bad requests to nginx
nginx-botsearch.conf: filter to match web requests for selected URLs that don't exist

The following have been added by ourselves:

2026/01/15 13:37 13/15 Fail2Ban Setup

HomeWiki - https://wiki.oscardegroot.nl/

www-login-fail.conf: filter to detect failed login attempts on our website.

The following default is not used, because we have no basic auth enables in Nginx

nginx-http-auth.conf: filter for http basic authentication failures
nginx-limit-req.conf: filter to ban hosts, that fail through nginx by limit request processing
rate

/etc/fail2ban/jail.local

#
HTTP servers
#
[nginx-botsearch]
enabled = true
port = http,https
logpath = /var/log/nginx/access.*.log
findtime = 900
maxretry = 3
banaction = nftables-subnet[type=multiport]

[nginx-bad-request]
enabled = true
port = http,https
logpath = /var/log/nginx/access.*.log
findtime = 900
maxretry = 3
banaction = nftables-subnet[type=multiport]

[www-login-fail]
enabled = true
port = http,https
logpath = /var/log/nginx/error.www.log
findtime = 900
maxretry = 3
banaction = nftables-subnet[type=multiport]

To use more aggressive http-auth modes set filter parameter "mode" in
jail.local:
normal (default), aggressive (combines all), auth or fallback
See "tests/files/logs/nginx-http-auth" or "filter.d/nginx-http-auth.conf"
for usage example and details.
[nginx-http-auth]
mode = normal
port = http,https
logpath = %(nginx_error_log)s

To use 'nginx-limit-req' jail you should have `ngx_http_limit_req_module`
and define `limit_req` and `limit_req_zone` as described in nginx
documentation

Last update: 2023/09/05 19:06 linux:apps:fail2ban https://wiki.oscardegroot.nl/doku.php?id=linux:apps:fail2ban&rev=1693940762

https://wiki.oscardegroot.nl/ Printed on 2026/01/15 13:37

http://nginx.org/en/docs/http/ngx_http_limit_req_module.html
or for example see in 'config/filter.d/nginx-limit-req.conf'
[nginx-limit-req]
port = http,https
logpath = %(nginx_error_log)s

/etc/fail2ban/filter.d/nginx-bad-request.conf

[Definition]
The request often doesn't contain a method, only some encoded garbage
This will also match requests that are entirely empty
failregex = ^<HOST> - \S+ \[\] "[^"]*" 400

datepattern = {^LN-BEG}%%ExY(?P<_sep>[-/.])%%m(?P=_sep)%%d[T
]%%H:%%M:%%S(?:[.,]%%f)?(?:\s*%%z)?
 ^[^\[]*\[({DATE})
 {^LN-BEG}

journalmatch = _SYSTEMD_UNIT=nginx.service + _COMM=nginx

/etc/fail2ban/filter.d/nginx-botsearch.conf

INCLUDES]
Load regexes for filtering
before = botsearch-common.conf

[Definition]
failregex = ^<HOST> \- \S+ \[\] \"(GET|POST|HEAD) \/<block> \S+\" 404 .+$
 ^ \[error\] \d+#\d+: *\d+ (\S+)?\"\S+\" (failed|is not found)
\(2\: No such file or directory\), client\: <HOST>\, server\: \S*\, request:
\"(GET|POST|HEAD) \/<block> \S+\"\, .*?$

ignoreregex =

datepattern = {^LN-BEG}%%ExY(?P<_sep>[-/.])%%m(?P=_sep)%%d[T
]%%H:%%M:%%S(?:[.,]%%f)?(?:\s*%%z)?
 ^[^\[]*\[({DATE})
 {^LN-BEG}

journalmatch = _SYSTEMD_UNIT=nginx.service + _COMM=nginx

</code>

/etc/fail2ban/filter.d/www-login-fail.conf

[INCLUDES]
Load regexes for filtering

2026/01/15 13:37 15/15 Fail2Ban Setup

HomeWiki - https://wiki.oscardegroot.nl/

before =

[Definition]

failregex =
^.+Login\sattempt\suser.+incorrect\spassword.+client:\s<HOST>.+,\sserver.+$
 ^.+Login\sattempt\sip\[<HOST>\].+$

ignoreregex =

datepattern =

Links

How Fail2Ban Works
How To Protect an Nginx Server with Fail2Ban

From:
https://wiki.oscardegroot.nl/ - HomeWiki

Permanent link:
https://wiki.oscardegroot.nl/doku.php?id=linux:apps:fail2ban&rev=1693940762

Last update: 2023/09/05 19:06

https://www.digitalocean.com/community/tutorials/how-fail2ban-works-to-protect-services-on-a-linux-server
https://www.digitalocean.com/community/tutorials/how-to-protect-an-nginx-server-with-fail2ban-on-ubuntu-14-04
https://wiki.oscardegroot.nl/
https://wiki.oscardegroot.nl/doku.php?id=linux:apps:fail2ban&rev=1693940762

	Fail2Ban Setup
	Introduction
	Install
	Configuration
	/etc/fail2ban/fail2ban.local

	Jails
	/etc/fail2ban/jail.local
	Debian default Jails
	Systemd Journal

	Filters
	www-login-fail.conf
	fail2ban-regex
	fail2ban-regex
	fail2ban-regex inline

	Actions
	Ban IP Range (subnet)

	Restart & activating Changes
	Monitor Status
	fail2ban-client
	NFtables

	Unbanning
	Cleaning
	Optional: Setting Up Mail Notifications
	NGINX
	/etc/fail2ban/jail.local
	/etc/fail2ban/filter.d/nginx-bad-request.conf
	/etc/fail2ban/filter.d/nginx-botsearch.conf
	/etc/fail2ban/filter.d/www-login-fail.conf

	Links

