2025/11/01 14:07 1/2 ESP Memory usage

ESP Memory usage

Memory

Location |Description
Bootloader|internal ROM, size 64KB, contains bootloader to access the external flash.
Flash external flash memory, size depending on the board variant between 512 KB and 4 MB.

Instruction RAM, static RAM, total size 64 KB. 32KB contains persistent code that needs
to execute quickly or compete with other Flash read routines (such as Interrupt Service
IRAM Routines (ISR)), this area is populated from Flash at boot time. 32 KB, divided into two

18 KB blocks, serves as an instruction cache which is loaded from the Flash at runtime

with the respective current code.

Data RAM, static RAM, size 96 KB, contains the program data. 16 KB are already
consumed by the Sytems RAM block, so that about 80 KB are still available for the

DRAM application. In the Arduino environment, the SDK already consumes about 32 KB. For
application data (static data, stack and heap) thus remain about 48 KB.
Sections

The following sections are relevant:

Sector Description
data This section contains “initialized” data, i.e. which needs copying from FLASH to DRAM
) on powerup.

This section contains “read only” data, like constant data, e.g. strings: Serial.print
(“Hello™);) “Hello” = rodata. When booting, this area is copied from FLASH to DRAM.

-rodata Which is kind of strange, because it is read only and could be in flash as well. But
maybe this is done for speed.
bbs Section used for uninitialized variables, e.g. int i ;. When booting, this area is filled with

0 (zero).

This section is used for uncached code and is located in FLASH. The currently required
.irom0O.text|parts are copied to one of the two instruction cache blocks (16 KB each) at runtime and
executed there.

Section used for code, which is transferred to IRAM at boot time and executed there.
The code remains permanently in the IRAM. It is code that needs to be executed quickly
or in competition with the other reading routines of Flash (e.qg., interrupt service

text routines (ISR)). The maximum size is 32 KB. Due to this size limitation we usually end up
using a directive to put code into FLASH to save space - but REALLY time critical code
should be left in RAM. Of course it does get copied into RAM (cacheing) but that could
mean execution times which are different first time around.

The section sizes can be obtained by running:

xtensa-1x106-elf-objdump -h -j .data -j .rodata -j .bss -j .text -j
.irom0@.text controller

Which results in something like this:

HomeWiki - https://wiki.oscardegroot.nl/

Last update: 2022/01/15 11:38 esp:esp8266:open-sdk:memory https://wiki.oscardegroot.nl/doku.php?id=esp:esp8266:open-sdk:memory

Sections:
Idx Name Size VMA LMA File off Algn
0 .data 0000087e 3ffe8000 3ffe8000 0000000 2**4
CONTENTS, ALLOC, LOAD, DATA
1 .rodata 00005494 3ffe8880 3ffe8880 00000960 2**4
CONTENTS, ALLOC, LOAD, READONLY, DATA
2 .bss 000066d8 3ffeddl8 3ffeddl8 00005df8 2**4
ALLOC

3 .irom0@.text 0003a96e 40201010 40201010 0000cc40 2**4
CONTENTS, ALLOC, LOAD, READONLY, CODE

4 .text 00006e3d 40100000 40100000 00005df4 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE

Heap

There are no individual limits for the sizes of the sections. The ESP8266 has 80K of RAM which is
occupied by .data, .rodata, .bss, the stack and the heap. Basically, the space represented by (80K
- sizeof(.data) - sizeof(.rodata) - sizeof(.bss)) is used by the heap growing.

From:
https://wiki.oscardegroot.nl/ - HomeWiki

Permanent link: C
https://wiki.oscardegroot.nl/doku.php?id=esp:esp8266:open-sdk:memory =

Last update: 2022/01/15 11:38

https://wiki.oscardegroot.nl/ Printed on 2025/11/01 14:07

https://wiki.oscardegroot.nl/
https://wiki.oscardegroot.nl/doku.php?id=esp:esp8266:open-sdk:memory

	ESP Memory usage
	Memory
	Sections
	Heap

