2025/11/02 04:09 1/9 ESP32 - Rotary Encoder

ESP32 - Rotary Encoder

How to reliably read rotary encoder on ESP32?

Background

For usage on my ESP32 projects, | ordered several rotary encoders from Ali Express. It appeared that
all of these gave many erratic and unreliable readings. Indicating CW when turning CWW and visa
versa. Approximately out out the 20-30 readings was erroneous. Initially | assumed contact bouncing,
but the problem persisted after implementing an anti-bounce filter in the software. On a Raspberry
this problem does not exist, so it seems that the ESP32 does not work well with this type of rotary
encoders. This page describes both cause and solution for this problem.

Problem cause

It appears that the encoders | bought have RC filters on their output connections. Apparently, with the
intention to eliminate contact bounce. However, side effect of this is that the rise and decay times of
the rotary pulses do not have sharp edges, but curved edges. The image below is borrowed from
www.allaboutcircuits.com (see links below) illustrates this. The ESP32 interrupt mechanism is not able
to handle well interrupts and readings on slow edges. This resulted in erroneous readings. E.g.
interrupts on negative edges showed a gpio value of 1 in the interrupt routine, where 0 is expected.

HomeWiki - https://wiki.oscardegroot.nl/

http://www.allaboutcircuits.com

Last update: 2024/10/15 15:47 esp:esp32:rotary-encoder https://wiki.oscardegroot.nl/doku.php?id=esp:esp32:rotary-encoder

Ve

e

|- Bt e

n:ulup |
A Fitker |

R | |
(A=) \
PN D . \ /
Falling Bising
Encader

il
Hardware Modifications

The rotary encoders | bought appeared to have four 10K resistors in series with the rotary contact
(value of R in picture above). After replacing the following resistor pairs, the readings improved
significantly.

e Pull-down resistors from 10K -> to 501 Ohm, The positions for S1 and S2 contacts on the back
of the encoder are marked with red circles in the first image.
e Pull-up resistors from 10K -> to 4,7K Ohm.

Reading Method 1

This is the most simple approach, requiring only 1 interrupt (either on S1 or S2). It appeared to work
flawless. In this approach only of the S1 or S2 signals needs to be monitored. So, one interrupt on the
negative edge is sufficient. When an interrupt occurs, compare the values of S1 and S2. If they are
equal the rotation is on one direction. If they differ, the rotation is in the opposite direction.

typedef struct rotery event {
uint32 t gpio value;
int interupt;

} rotery event;

#define MASK PIN16 1<<16
#define MASK PIN17 1<<17
#define MASK PIN21 1<<21

// Static key definitions:

static int
static int
static int
static int
int rotery

int seq idx
int seq a
int seq b

int rotery
int rotery

rotery switch =

rotery rl
rotery r2
debounce block
value

value right
value left

" ~E o~

[N ocNoNONO)

0;

.
’

o o

.
’

= ROTERY_RIGHT;
ROTERY LEFT;

https://wiki.oscardeg

root.nl/

Printed on 2025/11/02 04:09

2025/11/02 04:09 3/9 ESP32 - Rotary Encoder

static QueueHandle t gpio evt queue = NULL;

esp_timer handle t rotery debounce timer handle; // Timer to remove
(multiple fast GPIO interrupt updates)

portBASE TYPE xHigherPriorityTaskWoken = pdFALSE;
SemaphoreHandle t xSemaphore;

[[[55555550c505005050055000E50006505055000550000500005000050000C
// gpio_isr handler - Interrupt Handler
R e L ELELELLELELEE
static void IRAM ATTR gpio isr handler(void* arg)
{
uint32 t gpioValue;
uint32 t returnValue;
struct rotery event re;
xSemaphoreTakeFromISR(xSemaphore, &xHigherPriorityTaskWoken);
if (!'debounce block)
{
re.gpio value = REG READ(GPIO IN REG);
re.interupt = *((int*)arg);
if (((re.interupt == 16) && ((re.gpio value & MASK PIN16) == 0))
|
((re.interupt == 17) && ((re.gpio value & MASK PIN17) == 0)))
debounce block = 1;
// Just post the interrupt event to the queue
xQueueSendFromISR(gpio evt queue, &re, NULL);
}
}
xSemaphoreGiveFromISR(xSemaphore, &xHigherPriorityTaskWoken);
}
A R L L L L L L L L

static void gpio event task(void* arg)
{
struct rotery event re;
for(;;)
{
if (xQueueReceive(gpio evt queue, &re, portMAX DELAY))

{

int pinl6
int pinl7
int pin2l

(re.gpio value & MASK PIN16)>>16;
(re.gpio value & MASK PIN17)>>17;
(re.gpio value & MASK PIN21)>>21;

if (pinl6 == pinl7)

HomeWiki - https://wiki.oscardegroot.nl/

Last update: 2024/10/15 15:47 esp:esp32:rotary-encoder https://wiki.oscardegroot.nl/doku.php?id=esp:esp32:rotary-encoder

printf("intr [%d] 16[%d] 17[%d] 21[%d] --> LEFT\n",
re.interupt, pinl6, pinl7, pin2l);
else
printf("intr [%d] 16[%d] 17[%d] 21[%d] --> RIGHT\n",
re.interupt, pinl6, pinl7, pin2l);
vTaskDelay (80 / portTICK PERIOD MS);

xSemaphoreTake(xSemaphore, portMAX DELAY);
debounce block = 0;
xSemaphoreGive(xSemaphore);

T T R R T T T TEEF PP RERERP

void rotery init(int switch gpio, int rl gpio, int r2 gpio)

{

gpio config t io conf;
xSemaphore = xSemaphoreCreateMutex();

// Save the GPIO in the global variables
rotery switch switch gpio;

rotery rl = rl gpio;

rotery r2 = r2_gpio;

io conf.mode = GPIO MODE INPUT; //set as input
mode

io _conf.intr_type = GPIO INTR NEGEDGE; //interrupt of
negative edge (pulldown by encoder)

io conf.pull up en = GPIO PULLUP DISABLE; //disable pull-up
mode

io conf.pull down en = GPIO PULLDOWN DISABLE; //disable pull-down
mode

io conf.pin bit mask = (1lULL<<rotery switch); //bit mask of the

pins that you want to set

gpio config(&io conf);

io conf.pin bit mask = (lULL<<rotery rl); //bit mask of the
pins that you want to set

gpio config(&io conf);

io conf.pin bit mask = (1lULL<<rotery r2); //bit mask of the
pins that you want to set

gpio config(&io conf);

//create a queue to handle gpio event from isr

https://wiki.oscardegroot.nl/ Printed on 2025/11/02 04:09

2025/11/02 04:09 5/9 ESP32 - Rotary Encoder

gpio evt queue = xQueueCreate(16, sizeof(struct rotery event));

//start gpio task
xTaskCreate(gpio event task, "gpio task", 4096, NULL, 10, NULL);

//hook isr handler for specific gpio pin

gpio install isr service(0);

gpio isr handler add(rotery switch, gpio isr handler, (void*)
&rotery switch);

gpio isr handler add(rotery rl, gpio isr handler, (void*)
&rotery rl);
}

Reading Method 2

This is a more complete/correct approach, requiring 2 interrupts (both on S1 or S2). It should provide
more reliability/resilience than method 1. The description below is borrowed from
www.allaboutcircuits.com (see links below). A rotary encoder generates two output signals during
rotation. Depending on the direction, one of the signals leads the other. You can see the output signal
waveforms of an incremental rotary encoder and the expected bit sequence below.

-
-
-
-5

Output A Clockwilse
Sequence

it B gl
€2
£a

|
o
o
1

e - -]

dHRE l - Clockwise

. | tq
Dperation
Counter-Clockwise
j Dutput A Sequence

12

. E
1 a
o a
o 1
1 1

i | | |] Counter -Clockwise
E 1 i Operation

Connecting S1 and S2 to 2 GPIO pins with interrupts triggered on both edges. With this we can track
both S1 and S2 signals and detect a rotation when an expected sequence is received. As it can be
seen from the waveform diagram, a clockwise motion generates A = ...0011... and B = ...1001...
When we record both of the signals in bytes segA and seqB by shifting in the last reading from right,
we can compare these values and determine a new rotational step.

// Static key definitions:

static int rotery switch = 0;
static int rotery rl =0;
static int rotery r2 = 0;

HomeWiki - https://wiki.oscardegroot.nl/

http://www.allaboutcircuits.com

Last update: 2024/10/15 15:47 esp:esp32:rotary-encoder https://wiki.oscardegroot.nl/doku.php?id=esp:esp32:rotary-encoder

static int debounce block
int rotery value

I
o o

int seq_idx =
int seq a = 0;
int seq b =0

int rotery value right = ROTERY_ RIGHT;
int rotery value left = ROTERY_ LEFT;

static QueueHandle t gpio evt queue = NULL;

esp_timer handle t rotery debounce timer handle; // Timer to remove
(multiple fast GPIO interrupt updates)

portBASE TYPE xHigherPriorityTaskWoken = pdFALSE;
SemaphoreHandle t xSemaphore;

////e=ccceeeeEm000005050000000005555050505EEE5555555502000000000C
// gpio _isr handler - Interrupt Handler
R R e e
static void IRAM ATTR gpio isr handler(void* arg)
{
uint32 t gpioValue;
uint32_t returnValue;
struct rotery event re;
xSemaphoreTakeFromISR(xSemaphore, &xHigherPriorityTaskWoken);
if (!'debounce block)
{
re.gpio value = REG READ(GPIO IN REG);
re.interupt = *((int*)arg);
if (((re.interupt == 16)) || ((re.interupt == 17)))
{
debounce block = 1;
// Just post the interrupt event to the queue
xQueueSendFromISR(gpio evt queue, &re, NULL);
}
}
xSemaphoreGiveFromISR(xSemaphore, &xHigherPriorityTaskWoken);
}
[f/omemmc55555000000055505055006555500000000050000000ECEEE00000

static void gpio event task(void* arg)
{

struct rotery event re;

for(;;)

https://wiki.oscardegroot.nl/ Printed on 2025/11/02 04:09

2025/11/02 04:09 7/9 ESP32 - Rotary Encoder

{

if (xQueueReceive(gpio evt queue, &re, portMAX DELAY))
{

int pinl6 = (re.gpio value & MASK PIN16)>>16;

int pinl7 (re.gpio value & MASK PIN17)>>17;

int pin21 (re.gpio value & MASK PIN21)>>21;

if (seq idx '= 0)
{
seq a=seq a<<l;
seq b=seq b<<l;
}
seq a = seq_a | pinl6;
seq b = seq b | pinl7;

seq idx++;

if (pinle == 1 && pinl7 == 1)
{
if (seq a == 0x03 && seq b == 0x09)
printf("RIGHT\n");
else if (seq a == 0x09 && seq b == 0x03)
printf("LEFT\n");
else
printf("ERROR seqA=[%x] seqB=%x]\n", seq a, seq b

0;

’

seq idx
seq a =
seq b

o o

}

else if (seq idx == 4)

{
printf("SEQ ERROR seqA=[%x] seqB=%x]\n", seq a, seq b);
seq idx = 0;
seq a =
seq b

’

o o

}

vTaskDelay (80 / portTICK PERIOD MS);
xSemaphoreTake(xSemaphore, portMAX DELAY);
debounce block = 0;

xSemaphoreGive(xSemaphore);

T EEELT T EEEFEPPP

HomeWiki - https://wiki.oscardegroot.nl/

Last update: 2024/10/15 15:47

esp:esp32:rotary-encoder https://wiki.oscardegroot.nl/doku.php?id=esp:esp32:rotary-encoder

void rotery init(int switch gpio, int rl gpio, int r2 gpio)

{

gpio _config t io conf;

xSemaphore = xSemaphoreCreateMutex();

// Save the GPIO in
rotery switch =
rotery rl =
rotery r2 =

io_conf.mode = GPIO

io conf.intr type =

negative edge (pulldown

io conf.pull up en =
io conf.pull down en = GPIO PULLDOWN DISABLE;

mode

io conf.pin bit mask = (lULL<<rotery switch);

that you want to set

the global variables
switch gpio;

rl gpio;

r2 gpio;

MODE INPUT;

GPIO INTR_ANYEDGE;

by encoder)

GPIO PULLUP DISABLE;

gpio config(&io conf);
io conf.pin bit mask = (lULL<<rotery rl);

that you want to set

gpio config(&io conf);
io _conf.pin bit mask = (1lULL<<rotery r2);

that you want to set

gpio config(&io conf);

//create a queue to handle gpio event from isr

//set as input mode
//interrupt of

//disable pull-up mode
//disable pull-down
//bit mask of the pins

//bit mask of the pins

//bit mask of the pins

gpio evt queue = xQueueCreate(16, sizeof(struct rotery event));

//start gpio task

xTaskCreate(gpio event task,

//hook isr handler for specific gpio pin
gpio install isr service(0);
gpio isr handler add(rotery switch, gpio isr handler, (void*)

&rotery switch);

"gpio task", 4096, NULL, 10, NULL);

gpio isr handler add(rotery rl, gpio isr handler, (void*) &rotery rl);
gpio isr handler add(rotery r2, gpio isr handler, (void*) &rotery r2);

// Create timer for debouncing (multiple fast GPIO interrupt updates)
const esp timer create args t rotery debounce timer args = {
.callback = &rotery debounce timer callback,
/* argument specified here will be passed to timer callback

function */

.arg = (void*) rotery debounce timer handle,
.name = "rotery debounce"

};

esp timer create(&rotery debounce timer args,

&rotery debounce timer handle);

https://wiki.oscardegroot.nl/

Printed on 2025/11/02 04:09

2025/11/02 04:09 9/9 ESP32 - Rotary Encoder

}

Links

e www.allaboutcircuits.com

From:
https://wiki.oscardegroot.nl/ - HomeWiki

Permanent link:
https://wiki.oscardegroot.nl/doku.php?id=esp:esp32:rotary-encoder

Last update: 2024/10/15 15:47

HomeWiki - https://wiki.oscardegroot.nl/

https://www.allaboutcircuits.com/projects/how-to-use-a-rotary-encoder-in-a-mcu-based-project/
https://wiki.oscardegroot.nl/
https://wiki.oscardegroot.nl/doku.php?id=esp:esp32:rotary-encoder

	ESP32 - Rotary Encoder
	Background
	Problem cause
	Hardware Modifications
	Reading Method 1
	Reading Method 2
	Links

