2025/11/01 09:26 1/2 Start a Project

Start a Project

Copy Sample

Now you are ready to prepare your application for ESP32. You can start with get-started/hello_world
project from examples directory in IDF. Copy get-started/hello_world to ~/esp directory: Linux and
macOS

cd ~/development/esp32/projects
cp -r $IDF PATH/examples/get-started/hello world .

Configure

This is a one time initial setup for a new project. Navigate to the project directory. Set ESP32 chip as
the target and run the project configuration utility menuconfig.

cd ~/development/esp32/projects/hello world
idf.py set-target esp32
idf.py menuconfig

Setting the target with idf.py set-target {IDF_TARGET} should be done once, after opening a new
project. If the project contains some existing builds and configuration, they will be cleared and
initialized. The target may be saved in environment variable to skip this step at all. If the previous
steps have been done correctly, the Espressif IOT menu appears. You are using this menu to set up
project specific variables, e.g. Wi-Fi network name and password, the processor speed, etc. Setting up
the project with menuconfig may be skipped for “hello_word”. This example will run with default
configuration.

Build

Build the project by running:
idf.py build

This command will compile the application and all ESP-IDF components, then it will generate the
bootloader, partition table, and application binaries.

$ idf.py build

Running cmake in directory /path/to/hello world/build

Executing "cmake -G Ninja --warn-uninitialized /path/to/hello world"...
Warn about uninitialized values.

-- Found Git: /usr/bin/git (found version "2.17.0")

-- Building empty aws iot component due to configuration

-- Component names:

HomeWiki - https://wiki.oscardegroot.nl/

Last

;83;;8:1/15 esp:esp32:esp-idf-environment:startproject https://wiki.oscardegroot.nl/doku.php?id=esp:esp32:esp-idf-environment:startproject

11:38

-- Component paths:
(more lines of build system output)

[527/527] Generating hello-world.bin
esptool.py v2.3.1

Project build complete. To flash, run this command:
../../../components/esptool py/esptool/esptool.py -p (PORT) -b 921600
write flash --flash mode dio --flash size detect --flash freq 40m 0x10000
build/hello-world.bin build 0x1000 build/bootloader/bootloader.bin 0x8000

build/partition table/partition-table.bin
or run 'idf.py -p PORT flash'

If there are no errors, the build will finish by generating the firmware binary .bin file.

Flash

Flash the binaries that you just built onto your ESP32 board by running:
idf.py -p PORT [-b BAUD] flash

Replace PORT with your ESP32 board’s serial port name from Step 6. Connect Your Device.

You can also change the flasher baud rate by replacing BAUD with the baud rate you need. The
default baud rate is 460800.

For more information on idf.py arguments, see idf.py.

From:
https://wiki.oscardegroot.nl/ - HomeWiki

Permanent link:

Last update: 2022/01/15 11:38

https://wiki.oscardegroot.nl/ Printed on 2025/11/01 09:26

https://wiki.oscardegroot.nl/
https://wiki.oscardegroot.nl/doku.php?id=esp:esp32:esp-idf-environment:startproject

	Start a Project
	Copy Sample
	Configure
	Build
	Flash

