2026/01/16 16:00 1/9 ESP32 - Rotary Encoder

ESP32 - Rotary Encoder

How to reliably read rotary encoder on ESP32?

Background

For usage on my ESP32 projects, | ordered several rotary encoders from Ali Express. It appeared that
all of these gave many erratic and unreliable readings. Indicating CW when turning CWW and visa
versa. Approximately out out the 20-30 readings was erroneous. Initially | assumed contact bouncing,
but the problem persisted after implementing an anti-bounce filter in the software. On a Raspberry
this problem does not exist, so it seems that the ESP32 does not work well with this type of rotary
encoders. This page describes both cause and solution for this problem.

Problem cause

It appears that the encoders | bought have RC filters on their output connections. Apparently, with the
intention to eliminate contact bounce. However, side effect of this is that the rise and decay times of
the rotary pulses do not have sharp edges, but curved edges. The image below is borrowed from
www.allaboutcircuits.com (see links below) illustrates this. The ESP32 interrupt mechanism is not able
to handle well interrupts and readings on slow edges. This resulted in erroneous readings. E.g.
interrupts on negative edges showed a gpio value of 1 in the interrupt routine, where 0 is expected.

HomeWiki - https://wiki.oscardegroot.nl/

http://www.allaboutcircuits.com

Last
update:
2024/10/09
17:26

esp:esp32:esp-idf:rotery-encoder https://wiki.oscardegroot.nl/doku.php?id=esp:esp32:esp-idf:rotery-encoder&rev=1728494772

|- gt R

n:ulup |
RE Filter |

R ! |
MEu \
FiN D . ! /
Falling Bising
Encader

;[Jf Cartact
Hardware Modifications

The rotary encoders | bought appeared to have resistors of 10k in series with the rotary contact
(value of R in picture above). After replacing these resistors to 501 Ohm, the readings improved
significantly. The positions for S1 and S2 contacts on the back of the encoder are marked with red
circles in the first image.

Reading Method 1

This is the most simple approach, requiring only 1 interrupt (either on S1 or S2). It appeared to work
flawless. In this approach only of the S1 or S2 signals needs to be monitored. So, one interrupt on the
negative edge is sufficient. When an interrupt occurs, compare the values of S1 and S2. If they are
equal the rotation is on one direction. If they differ, the rotation is in the opposite direction.

typedef struct rotery event {
uint32 t gpio value;
int interupt;

} rotery event;

#define MASK PIN16 1<<16
#define MASK PIN17 1<<17
#define MASK PIN21 1<<21

// Static key definitions:

static int rotery switch = 0;

static int rotery rl = 0;

static int rotery r2 0;

static int debounce block 0;

int rotery value = 0;

int seq idx = 0;

int seq a = 0;

int seq b = 0;

int rotery value right = ROTERY_ RIGHT;

int rotery value left ROTERY LEFT;

https://wiki.oscardegroot.nl/ Printed on 2026/01/16 16:00

2026/01/16 16:00 3/9 ESP32 - Rotary Encoder

static QueueHandle t gpio evt queue = NULL;

esp_timer handle t rotery debounce timer handle; // Timer to remove
(multiple fast GPIO interrupt updates)

portBASE TYPE xHigherPriorityTaskWoken = pdFALSE;
SemaphoreHandle t xSemaphore;

[[[55555550c505005050055000E50006505055000550000500005000050000C
// gpio_isr handler - Interrupt Handler
R e L ELELELLELELEE
static void IRAM ATTR gpio isr handler(void* arg)
{
uint32 t gpioValue;
uint32 t returnValue;
struct rotery event re;
xSemaphoreTakeFromISR(xSemaphore, &xHigherPriorityTaskWoken);
if (!'debounce block)
{
re.gpio value = REG READ(GPIO IN REG);
re.interupt = *((int*)arg);
if (((re.interupt == 16) && ((re.gpio value & MASK PIN16) == 0))
|
((re.interupt == 17) && ((re.gpio value & MASK PIN17) == 0)))
debounce block = 1;
// Just post the interrupt event to the queue
xQueueSendFromISR(gpio evt queue, &re, NULL);
}
}
xSemaphoreGiveFromISR(xSemaphore, &xHigherPriorityTaskWoken);
}
A R L L L L L L L L

static void gpio event task(void* arg)
{
struct rotery event re;
for(;;)
{
if (xQueueReceive(gpio evt queue, &re, portMAX DELAY))

{

int pinl6
int pinl7
int pin2l

(re.gpio value & MASK PIN16)>>16;
(re.gpio value & MASK PIN17)>>17;
(re.gpio value & MASK PIN21)>>21;

if (pinl6 == pinl7)

HomeWiki - https://wiki.oscardegroot.nl/

Last
update:
2024/10/09
17:26

esp:esp32:esp-idf:rotery-encoder https://wiki.oscardegroot.nl/doku.php?id=esp:esp32:esp-idf:rotery-encoder&rev=1728494772

printf("intr [%d] 16[%d] 17[%d] 21[%d]

re.interupt, pinl6, pinl7, pin2l);
else

printf("intr [%d] 16[%d] 17[%d] 21[%d]

re.interupt, pinl6, pinl7, pin2l1);
vTaskDelay (80 / portTICK PERIOD MS);

xSemaphoreTake(xSemaphore, portMAX DELAY);

debounce block = 0;
xSemaphoreGive(xSemaphore);

--> LEFT\n",

--> RIGHT\n",

//set as input

}
}
}
A R R
// ROTERY_INIT
R R L
void rotery init(int switch gpio, int rl gpio, int r2 gpio)
{
gpio config t io conf;
xSemaphore = xSemaphoreCreateMutex();
// Save the GPIO in the global variables
rotery switch = switch gpio;
rotery rl = rl gpio;
rotery r2 = r2_gpio;
io conf.mode = GPIO MODE INPUT;
mode

io _conf.intr_ type = GPIO INTR NEGEDGE;
negative edge (pulldown by encoder)

io conf.pull up en = GPIO PULLUP DISABLE;
mode

io _conf.pull down en = GPIO PULLDOWN DISABLE;

mode

io _conf.pin bit mask
pins that you want to set

gpio config(&io conf);

io _conf.pin bit mask = (1lULL<<rotery rl);
pins that you want to set

gpio config(&io conf);

io _conf.pin bit mask = (lULL<<rotery r2);
pins that you want to set

gpio config(&io conf);

(1ULL<<rotery switch);

//interrupt of
//disable pull-up

//disable pull-down

//bit mask of the

//bit mask of the

//bit mask of the

https://wiki.oscardegroot.nl/

Printed on 2026/01/16 16:00

2026/01/16 16:00 5/9 ESP32 - Rotary Encoder

//create a queue to handle gpio event from isr
gpio evt queue = xQueueCreate(16, sizeof(struct rotery event));

//start gpio task
xTaskCreate(gpio event task, "gpio task", 4096, NULL, 10, NULL);

//hook isr handler for specific gpio pin

gpio install isr service(0);

gpio isr handler add(rotery switch, gpio isr handler, (void*)
&rotery switch);

gpio isr handler add(rotery rl, gpio isr handler, (void*)
&rotery rl);
}

Reading Method 2

This is a more complete/correct approach, requiring 2 interrupts (both on S1 or S2). It should provide
more reliability/resilience than method 1. The description below is borrowed from
www.allaboutcircuits.com (see links below). A rotary encoder generates two output signals during
rotation. Depending on the direction, one of the signals leads the other. You can see the output signal
waveforms of an incremental rotary encoder and the expected bit sequence below.

TR I T 1
LI B B |
" Output A Clockwise
Sequence
£ utput B ¥l 0 1
1 =T | i T e i £2 o o
| | I | £3 1 o
8 EEES l....__.' Clockwlse ol
Operation

Counter-Clockwise

A Qutput A Sequence

o 41
ot B -
— i o

oo e
- -

ERRES

|] Counter -Clockwise
il Operation

Connecting S1 and S2 to 2 GPIO pins with interrupts triggered on both edges. With this we can track
both S1 and S2 signals and detect a rotation when an expected sequence is received. As it can be
seen from the waveform diagram, a clockwise motion generates A = ...0011... and B = ...1001...
When we record both of the signals in bytes segA and seqB by shifting in the last reading from right,
we can compare these values and determine a new rotational step.

// Static key definitions:
static int rotery switch 0;
static int rotery rl = 0;

HomeWiki - https://wiki.oscardegroot.nl/

http://www.allaboutcircuits.com

Last
update:
2024/10/09
17:26

esp:esp32:esp-idf:rotery-encoder https://wiki.oscardegroot.nl/doku.php?id=esp:esp32:esp-idf:rotery-encoder&rev=1728494772

static int rotery r2 = 0;
static int debounce block
int rotery value = 0;

Il
o

int seq idx =
int seq a = 0;
int seq b =0

int rotery value right = ROTERY RIGHT;
int rotery value left ROTERY LEFT;

static QueueHandle t gpio evt queue = NULL;

esp_timer handle t rotery debounce timer handle; // Timer to remove
(multiple fast GPIO interrupt updates)

portBASE TYPE xHigherPriorityTaskWoken = pdFALSE;
SemaphoreHandle t xSemaphore;

R R L EGRLEELLELELEE
// gpio_isr handler - Interrupt Handler
[l/emeemmcc5552000000055500055006555500000000050000000CC25E0000C
static void IRAM ATTR gpio isr handler(void* arg)
{
uint32 t gpioValue;
uint32 t returnValue;
struct rotery event re;
xSemaphoreTakeFromISR(xSemaphore, &xHigherPriorityTaskWoken);
if ('debounce block)
{
re.gpio value = REG READ(GPIO IN REG);
re.interupt = *((int*)arg);
if (((re.interupt == 16)) || ((re.interupt == 17)))
{
debounce block = 1;
// Just post the interrupt event to the queue
xQueueSendFromISR(gpio evt queue, &re, NULL);
}
}
xSemaphoreGiveFromISR(xSemaphore, &xHigherPriorityTaskWoken);
}
[[[555555505505005050055000E50006500065000650000500005000050000C

static void gpio event task(void* arg)

https://wiki.oscardegroot.nl/ Printed on 2026/01/16 16:00

2026/01/16 16:00 7/9 ESP32 - Rotary Encoder

{

struct rotery event re;

for(;;)
{
if (xQueueReceive(gpio evt queue, &re, portMAX DELAY))
{
int pinl6 = (re.gpio value & MASK PIN16)>>16;
int pinl7 = (re.gpio value & MASK PIN17)>>17;
int pin2l1 = (re.gpio value & MASK PIN21)>>21;
if (seq idx != 0)
{
seq_a=seq_a<<l;
seq_b=seq b<<1;
}
seq a = seq a | pinl6;
seq b = seq b | pinl7;
seq idx++;
if (pinle == 1 && pinl7 == 1)
{
if (seq a == Ox03 && seq b == 0x09)
printf ("RIGHT\n");
else if (seq a == 0x09 && seq b == 0x03)
printf("LEFT\n");
else
printf("ERROR seqA=[%x] seqB=%x]\n", seq a, seq b
)
seq _idx = 0;
seq a = 0;
seq b = 0;
}
else if (seq idx == 4)
{
printf("SEQ ERROR segA=[%x] seqB=%x]\n", seq a, seq b);
seq _idx = 0;
seq a = 0;
seq b = 0;
}
vTaskDelay (80 / portTICK PERIOD MS);
xSemaphoreTake(xSemaphore, portMAX DELAY);
debounce block = 0;
xSemaphoreGive(xSemaphore);
}
}
}
A G e L G LLEELELEE

HomeWiki - https://wiki.oscardegroot.nl/

Last

58225%/09 esp:esp32:esp-idf:rotery-encoder https://wiki.oscardegroot.nl/doku.php?id=esp:esp32:esp-idf:rotery-encoder&rev=1728494772

17:26

// ROTERY_INIT
T L CT TR PPP PR

void rotery init(int switch gpio, int rl gpio, int r2 gpio)

{

gpio config t io conf;
xSemaphore = xSemaphoreCreateMutex();

// Save the GPIO in the global variables
rotery switch switch gpio;

rotery rl = rl gpio;

rotery r2 = r2_gpio;

io conf.mode = GPIO MODE INPUT; //set as input mode

io conf.intr type = GPIO INTR ANYEDGE; //interrupt of
negative edge (pulldown by encoder)

io conf.pull up en = GPIO PULLUP DISABLE; //disable pull-up mode

io conf.pull down en = GPIO PULLDOWN DISABLE; //disable pull-down
mode

io conf.pin bit mask = (1ULL<<rotery switch); //bit mask of the pins

that you want to set

gpio config(&io conf);

io conf.pin bit mask = (lULL<<rotery rl); //bit mask of the pins
that you want to set

gpio config(&io conf);

io conf.pin bit mask = (lULL<<rotery r2); //bit mask of the pins
that you want to set

gpio config(&io conf);

//create a queue to handle gpio event from isr
gpio evt queue = xQueueCreate(16, sizeof(struct rotery event));

//start gpio task
xTaskCreate(gpio event task, "gpio task", 4096, NULL, 10, NULL);

//hook isr handler for specific gpio pin
gpio install isr service(0);
gpio isr handler add(rotery switch, gpio isr handler, (void¥*)
&rotery switch);
gpio isr handler add(rotery rl, gpio isr handler, (void*) &rotery rl);
gpio isr handler add(rotery r2, gpio isr handler, (void*) &rotery r2);

// Create timer for debouncing (multiple fast GPIO interrupt updates)
const esp timer create args t rotery debounce timer args = {
.callback = &rotery debounce timer callback,

/* argument specified here will be passed to timer callback
function */

https://wiki.oscardegroot.nl/ Printed on 2026/01/16 16:00

2026/01/16 16:00 9/9 ESP32 - Rotary Encoder

.arg = (void*) rotery debounce timer handle,
.name = "rotery debounce"
i
esp timer create(&rotery debounce timer args,
&rotery debounce timer handle);

}

Links

o www.allaboutcircuits.com

From:
https://wiki.oscardegroot.nl/ - HomeWiki

Permanent link: ': I i
https://wiki.oscardegroot.nl/doku.php?id=esp:esp32:esp-idf:rotery-encoder&rev=1728494772 F LY "

Last update: 2024/10/09 17:26

HomeWiki - https://wiki.oscardegroot.nl/

https://www.allaboutcircuits.com/projects/how-to-use-a-rotary-encoder-in-a-mcu-based-project/
https://wiki.oscardegroot.nl/
https://wiki.oscardegroot.nl/doku.php?id=esp:esp32:esp-idf:rotery-encoder&rev=1728494772

	ESP32 - Rotary Encoder
	Background
	Problem cause
	Hardware Modifications
	Reading Method 1
	Reading Method 2
	Links

